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This paper introduces a simplified analytical model describing the governing dynamics of
near-field acoustically levitated objects. The simplification converts the equation of
motion coupled with the partial differential equation of a compressible fluid, into a
compact, second order ordinary differential equation, where the local stiffness and
damping are transparent. The simplified model allows one to more easily analyse and
design near-field acoustic levitation based systems, and it also helps to devise closed-loop
controller algorithms for such systems. Near-field acoustic levitation employs fast
ultrasonic vibrations of a driving surface and exploits the viscosity and the compressibility
of a gaseous medium to achieve average, load carrying pressure. It is demonstrated that
the slow dynamics dominates the transient behaviour, while the time-scale associated
with the fast, ultrasonic excitation has a small presence in the oscillations of the levitated
object. Indeed, the present paper formulates the slow dynamics under an ultrasonic
excitation without the need to explicitly consider the latter. The simplified model is
compared with a numerical scheme based on Reynolds equation and with experiments,
both showing reasonably good results.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Near-field acoustic levitation, which is also known as squeeze film levitation, occurs when a planar object is placed in
proximity to a vibrating surface. Consequently, a thin layer of the ambient gas, commonly referred to as squeeze film, is
trapped in the clearance between the vibrating surface and the adjacent planar object. The abovementioned phenomenon
depends on the viscosity of the gas, which plays an important role such that the flow regime can be referred to as viscous (e.
g. [1,2]). Thanks to its viscous behaviour, the gas which resides inside the squeeze film cannot be immediately squeezed out.
Additionally, due to the compressibility of the entrapped gas, the average pressure inside the film is usually higher than the
surroundings, what results in a load carrying force. This force can levitate the planar object above the vibrating surface,
assuming the former is freely suspended. One possible application of the near-field acoustic levitation phenomenon is a
non-contacting bearing [3] where the stiffness and damping properties are important.

The abovementioned levitation mechanism can be represented by a combination of two distinct forces. The first force
considered here is the displacement related levitation force emanating from the compressibility of the gas. Langlois [2] who
proposed to use Reynolds equation for the modelling of the squeeze film, employed first order perturbation on this
), bucher@technion.ac.il (I. Bucher).

www.sciencedirect.com/science/journal/0022460X
www.elsevier.com/locate/jsvi
http://dx.doi.org/10.1016/j.jsv.2015.05.020
http://dx.doi.org/10.1016/j.jsv.2015.05.020
http://dx.doi.org/10.1016/j.jsv.2015.05.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2015.05.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2015.05.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2015.05.020&domain=pdf
mailto:dilssar@technion.ac.il
mailto:bucher@technion.ac.il
http://dx.doi.org/10.1016/j.jsv.2015.05.020


D. Ilssar, I. Bucher / Journal of Sound and Vibration 354 (2015) 154–166 155
equation. Nevertheless, this approach cannot predict the nominal value of the levitation force, which is a nonlinear effect.
Salbu [4] evaluated the levitation force using a simplified model of the squeeze film based on Boyle’s law, under the
assumption of mass conservation. This assumption suggests that there is no flow at the peripheries of the film, what violates
the boundary conditions since it leads to a discontinuity in the pressure distribution. However, the solution presented by
Salbu [4] is suitable at extremely high squeeze numbers (this measure will be introduced below). Minikes et al. [5]
developed an empirical expression which manages to predict the time averaged levitation force for wide intervals of
excitation amplitudes (of the vibrating surface) and squeeze numbers. Minikes also showed that a second order
perturbation solution of Reynolds equation can approximate this value, but for a limited range of excitation amplitudes.
Nevertheless, according to numerical simulations, this range is sufficiently wide for most purposes of near-field acoustic
levitation. Therefore the spirit of this approach is adopted in the current study.

The second force needed to be described within the levitation mechanism is the damping force resulting from the
viscosity of the gas. This force was studied extensively in the past (e.g. [6–10]), usually in the context of MEMS devices. In all
of these studies the clearance between the bounding surfaces was assumed to be oscillating at small amplitudes, and so the
squeeze film was modelled by the linearized Reynolds equation [6]. Moreover, Griffin et al. [9] made an additional
assumption which claims that the clearance varies slowly compared with the cut-off frequency and is thus confined to slow
frequencies. Griffin noted that under this assumption, the estimated damping force can be generalized to the case of large
displacements. In the current paper it is shown that a similar approach can be utilized for the calculation of the damping
force throughout near-field acoustic levitation. The latter is despite the presence of fast oscillations which originate in the
high excitation frequency.

It is important to note that the papers mentioned above deal with each of the forces exerted by the film separately,
assessing their steady-state values. The latter is carried out for the case where the mean clearance between the bounding
surfaces is pre-determined. However, a simplified analytical model which combines these forces in order to describe the
time varying dynamics of an acoustically levitated object was not presented in previous publications. Obviously, in this case,
the nominal clearance is determined due to equilibrium of forces.

For the purpose of controlling the dynamics of an acoustically levitated object, be it open or closed loop, a manageable
mathematical model is essential. Clearly, a full CFD or even a Reynolds equation based model coupled to the structural
dynamics, are by far too complex and impractical for devising a control strategy or for assessing the stiffness and damping
during design cycles. Indeed, the present paper seeks a simplified analytical model that describes merely the slow evolution
of the levitated object, given the enforced rapid oscillations.

The current paper begins with presentation of the governing equations describing the levitation mechanism. Next, based
on former numerical schemes (e.g. [11]), it is shown that the dynamics of the levitated object can be represented as a
superposition of slow and fast processes. This implies that it is possible to formulate a simplified analytical model which
describes merely the slow evolution of the levitated object, given the enforced and nonlinearly coupled fast oscillations.
Therefore, such simplified model is developed following two main steps. The first step relates only to the levitation force and
results in an equation which represents the slow evolution of the levitated object in absence of damping. Obviously, the
second step relates to the damping force and results in modification of the conservative equation so it includes the effect of
dissipation. The entire development is carried out under the assumption that the vibrating surface oscillates uniformly – as a
rigid piston.

Finally, after a satisfactory numerical verification, an experimental validation of the simplified model is carried out. The
results of this validation shows reasonable agreement of both the momentary frequency of the slow oscillations, and the
steady state levitation height. However, it is shown in the experiments that there is a significant deviation in the prediction
of the damping. Therefore, based on numerous experiments, a linear correction coefficient is determined for the dissipative
term in the abovementioned simplified model. That so this model will suit the system on which the experiments were
carried out.
2. Problem description

A simplified model of an acoustically levitated object is illustrated in Fig. 1. This model consists of an oscillating surface
producing the required excitation, and a freely suspended planar object, which are both cylindrical (disks) and with equal
diameters. As can be seen from Fig. 1, in this model, the excitation surface does not deform and it oscillates at a constant
Fig. 1. Schematic layout of the system.



D. Ilssar, I. Bucher / Journal of Sound and Vibration 354 (2015) 154–166156
frequency and displacement amplitude. Additionally, the levitated object is subjected only to the gravity and to the pressure
acting by the surrounding fluid.

2.1. Formulation of the governing equations

In order to describe the dynamics of the abovementioned system, two equations which couple the film’s behaviour with
the dynamics of the levitated object, are introduced. The behaviour of the squeeze film is approximated by Reynolds
equation which under the assumptions of isothermal conditions, and no lateral angular or tangential motion of the
bounding surfaces, takes the following form [2]:

∂
∂r

rh3p
∂p
∂r

� �
¼ 12μr

∂ phð Þ
∂t

(1)

where h is the time dependent air-gap between the levitated object and the excitation surface, p is the pressure distribution
inside the squeeze film, r is the radial coordinate, t denotes the time and μ which is taken here as 1.8253 �10�5 Pa � sec,
stands for the dynamic viscosity of the fluid.

Reynolds equation (1) can be derived from the Navier-Stokes momentum equation and from the continuity equation,
under commonly employed assumptions [1]. It is worth mentioning one important assumption concerning the air-gap
which is assumed to be much smaller compared with the other dimensions of the system. Accordingly, the normal
components of the pressure gradient and the flow velocity are negligible, while the velocity gradients in the transverse
directions are negligible as well. As a result, order of magnitude analysis with typical values leaves Reynolds equation
merely with viscous and pressure terms.

It was previously mentioned that Reynolds equation cannot describe the overall dynamics of the system, which also
depends on the levitated object. Therefore (1) must be coupled with the equation of motion accounting for the dynamics of
the levitated object. This equation considers the body force, the pressure distribution inside the squeeze film and the
ambient pressure, and so it takes the following form:

m
d2z
dt2

¼
Z 2π

0

Z r0

0
r p�pa
� �

drdθ�mg¼ 2π
Z r0

0
r p�pa
� �

dr�mg: (2)

Here, z is the height of the levitated object, which is measured from the nominal position of the excitation surface, m is the
mass of the levitated object, r0 denotes the radii of the bounding surfaces, pa that is taken here as 101325 Pa, is the ambient
pressure and g which is taken as 9.81 m/sec2 stands for the acceleration due to the gravity.

As mentioned, the excitation surface oscillates uniformly at a constant frequency according to:

ξ tð Þ ¼ a sin ωtð Þ (3)

where a; ω are the excitation amplitude and the excitation frequency respectively.
Therefore, the relation between the air-gap h and the levitation height z is:

h tð Þ ¼ z tð Þ�ξ tð Þ ¼ z tð Þ�a sin ωtð Þ: (4)

Substitution of (4) into (2) yields the equation of motion in terms of the pressure distribution and the air-gap, as (1):

m
d2h
dt2

¼ 2π
Z r0

0
r p�pa
� �

dr�mgþmω2a sin ωtð Þ: (5)

Finally, because the system is axisymmetric, there is no pressure gradient at the centre of the film. Additionally, the pressure
at the peripheries of the film is assumed to be equal to the ambient pressure, since the radius of the levitated object is equal
to the radius of the excitation surface. The latter is based on Minikes et al. [12] which examined this boundary condition
using a CFD analysis. Therefore, the boundary conditions of the pressure distribution inside the squeeze film are taken as
followings:

∂p r; tð Þ
∂r

����
r ¼ 0
¼ 0; p r¼ r0; tð Þ ¼ pa: (6)

Thus (1),(5),(6) are used in order to formulate the dynamics of the system illustrated in Fig. 1.

2.2. Preliminary numerical simulations – slow and fast dynamics

As shown by Minikes et al. [11], by discretization of the spatial (radial) coordinate to a finite number of nodes, Reynolds
equation (1) can be transformed into a set of ODEs as following:

∂p
∂t

� �
n
¼ h2

12μrn
pn

∂p
∂r

� �
n
þrn

∂p
∂r

� �2

n
þrnpn

∂2p
∂r2

� �
n

" #
�pn

h
dh
dt

(7)

where n denotes the index of the radial node.



D. Ilssar, I. Bucher / Journal of Sound and Vibration 354 (2015) 154–166 157
These equations are solved in time together with the equation of motion (2) or (5), using numerical integration. Here, the
spatial derivatives of the pressure distribution in every node are calculated using central differences formulas, while the
needed values at the external nodes n¼ 1;N are calculated according to the boundary conditions (6). By these means, the
results illustrated in Fig. 4 (solid black lines), were produced.

From this figure and from previous experiments and simulations (e.g. [11,13]) it is clear that the dynamic response of an
acoustically levitated object is composed of two distinct time scales. The first time scale relates to the slow transient
oscillations which are typically 2–3 orders of magnitude slower than the excitation frequency. The second time scale is
associated with the fast oscillations whose basic frequency equals to the excitation frequency. These low-amplitude fast
oscillations do not disappear at steady state. Consequently, and according to (4), the air-gap between the levitated object
and the excitation surface takes the following general form:

h tð Þ ¼ h tð Þþχ tð Þ�a sin ωtð Þ (8)

where χ represents the fast oscillations of the levitated object, and h stands for the slow evolution of the air-gap, or
equivalently the slow evolution of the levitated object.

It is the main goal of this paper to formulate a simplified equation fromwhich h can be found without having to solve (7).
Denoting the initial air-gap h0, the following non-dimensional measures are defined:

P ¼ p
pa
; H¼ h

h0
; H¼ h

h0
; R¼ r

r0
; T ¼ωt; σ ¼ 12μωr20

pah
2 ¼ 12μωr20

pah
2
0H

2; ε¼ a

h
¼ a
h0H

: (9)

Two important measures are σ, representing the squeeze number and ε which is the small non-dimensional excitation
amplitude. Indeed, σ; ε are the prevailing factors, whose magnitudes control the momentary behaviour of the system, as will
be shown below.

Substituting (9) into (1),(5),(6) yields the non-dimensional Reynolds equation:

∂
∂R

RH3P
∂P
∂R

� �
¼ σH

2
R
∂ PHð Þ
∂T

(10)

alongside the non-dimensional equation of motion:

d2H

dT2 ¼ 2πpar20
mh0ω2

Z 1

0
R P�1ð ÞdR� g

h0ω2þεH sin Tð Þ (11)

and the non-dimensional boundary conditions:

∂P R; Tð Þ
∂R

����
R ¼ 0
¼ 0; P R¼ 1; Tð Þ ¼ 1: (12)

3. Development of the simplified analytical model

In order to develop a simplified analytical model describing the slow dynamics of an acoustically levitated object, two
main steps are followed. In the first step, the pressure rise due to the rapid enforced oscillations is computed, leading to the
instantaneous time averaged levitation force, with which the gap-dependent stiffness of the film can be found. Next, the
damping force which dissipates energy and depends on the rate of the slowly varying gap is found. These two steps yield a
single ordinary differential equation describing the slow dynamics of the system illustrated in Fig. 1.

3.1. Formulation of the undamped system’s equation of motion

The initial step considers the degenerated system shown in Fig. 2. Here, since the upper object is fixed, the nominal air-
gap h is constant. The outcome of this step is the averaged force exerted on the fixed object due to the pressure elevation
which is caused due to the compressibility of the gas. This force will then be used in order to describe the instantaneous
averaged levitation force acting on a freely suspended object.

According to Fig. 2 and the relations (9), the non-dimensional air-gap varies as following:

H¼H 1�ε sin Tð Þ½ �: (13)
Fig. 2. Schematic layout of the degenerated system in which the upper object is fixed.
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It was already mentioned that nonlinear effects should be taken into account when the time averaged force or pressure are
to be found. Therefore, the non-dimensional pressure distribution is represented as a second order asymptotic series, as
suggested by Minikes et al. [5]:

P R; Tð Þ ¼ 1þεΠA R; Tð Þþε2ΠB R; Tð ÞþO ε3
� �

(14)

while as aforesaid, ε functions as a small parameter.
Substitution of (13) and (14) into the non-dimensional Reynolds equation (10) provides the following two leading orders

coupled equations:

O εð Þ: ∂
∂R

R
∂ΠA

∂R

� �
¼ Rσ

∂ΠA

∂T
� cos Tð Þ

� �
(15)

O ε2
� �

: Rσ
∂ ΠA sin Tð Þð Þ

∂T
þ ΠA�3 sin Tð Þð Þ ∂

∂R
R
∂ΠA

∂R

� �
þ ∂
∂R

R
∂ΠB

∂R

� �
þR

∂ΠA

∂R

� �2

¼ Rσ
∂ΠB

∂T
: (16)

In order to balance the leading order equation (15), the following general solution is suggested for ΠA:

ΠA R; Tð Þ ¼Π1 Rð Þ cos Tð ÞþΠ2 Rð Þ sin Tð Þ: (17)

By substituting (17) into (15) and performing harmonic balance, two ODEs are produced. Solving these equations such that
Π1;Π2 vanish at the peripheries in order to satisfy the boundary conditions (12), leads to the following solutions:

Π1 Rð Þ ¼ ber0
ffiffiffi
σ

p
R

� �
bei0

ffiffiffi
σ

p� ��bei0
ffiffiffi
σ

p
R

� �
ber0

ffiffiffi
σ

p� �
ber20

ffiffiffi
σ

p� �þbei20
ffiffiffi
σ

p� �
Π2 Rð Þ ¼ 1�ber0

ffiffiffi
σ

p
R

� �
ber0

ffiffiffi
σ

p� �þbei0
ffiffiffi
σ

p
R

� �
bei0

ffiffiffi
σ

p� �
ber20

ffiffiffi
σ

p� �þbei20
ffiffiffi
σ

p� � (18)

where berν Rð Þ; beiν Rð Þ are νth order Kelvin functions of the first kind.
One can notice that substitution of (17) into the second order equation (16) gives rise to terms dependent on second

temporal harmonics, and also to time independent terms. Therefore, in order to balance (16), the following general solution
is suggested for ΠB:

ΠB R; Tð Þ ¼Π3 Rð Þ cos 2Tð ÞþΠ4 Rð Þ sin 2Tð ÞþΠ5 Rð Þ: (19)

Substitution of (17) and (19) into (16) and averaging over one excitation period, generates the following equation:

Π2�3ð Þ d
dR

R
dΠ2

dR

� �
þ2

d
dR

R
dΠ5

dR

� �
þΠ1

d
dR

R
dΠ1

dR

� �
þR

dΠ1

dR

� �2

þ dΠ2

dR

� �2
" #

¼ 0: (20)

Since Π1;Π2 are known, (20) is a linear inhomogeneous ODE for Π5. The solution of this equation, under the boundary
conditions (12) (Π5 vanishes at the peripheries), yields the time independent part of the gauge pressure distribution:

Π5 Rð Þ ¼ 1
4

5�ber20
ffiffiffi
σ

p
R

� �þbei20
ffiffiffi
σ

p
R

� �þ4 ber0
ffiffiffi
σ

p
R

� �
ber0

ffiffiffi
σ

p� �þbei0
ffiffiffi
σ

p
R

� �
bei0

ffiffiffi
σ

p� �� 	
ber20

ffiffiffi
σ

p� �þbei20
ffiffiffi
σ

p� �
" #

: (21)

At this point the time averaged levitation force is calculated by integration on the total pressure (inside and outside the film)
over the area of the upper object, and averaging over one excitation period:

Flevitation ¼
1
2π

Z 2π

0

Z 2π

0

Z 1

0
R P�1ð ÞdRdθdT ¼ 2πε2

Z 1

0
RΠ5 Rð ÞdR¼ πε2K σð Þ (22)

where Flevitation has been normalized by par
2
0.

Here K σð Þ quantifies the force level as a function of the squeeze number and it attains the following closed form:

K σð Þ ¼ 5
4

1þ
ffiffiffi
2
σ

r
� bei0

ffiffiffi
σ

p� �
ber1

ffiffiffi
σ

p� �þbei1
ffiffiffi
σ

p� �� 	þber0
ffiffiffi
σ

p� �
ber1

ffiffiffi
σ

p� ��bei1
ffiffiffi
σ

p� �� 	
ber20

ffiffiffi
σ

p� �þbei20
ffiffiffi
σ

p� �
" #

: (23)

Fig. 3, which describes the functions Π5 Rð Þ; K σð Þ, shows a very good correlation to the results that were presented by
Minikes et al. [5] who made a similar analysis for a long rectangular system. Examination of Fig. 3, shows that beyond σ � 50,
the averaged levitation force does not increase considerably with the increment of the squeeze number. Hence for the
purpose of effective levitation vs. power usage, it is sufficient to choose excitation frequencies and amplitudes which lead to
such squeeze numbers.

Finally, it is important to mention that the levitation force emanates from the pressure profile built by the rapid
oscillations of the system, due to the compressibility of the gas. Therefore, since the evolution of the levitated object is much
slower than the excitation (see Fig. 4), its contribution to the averaged levitation force can be neglected. Moreover, it was
shown in the past (e.g. [11]) that the amplitude of the levitated object’s fast oscillations is 2–3 orders of magnitude smaller
than the excitation amplitude and so the contribution of these oscillations can be neglected as well. Consequentially, the
overall dynamics of the levitated object can be neglected when calculating Flevitation, which means that (22)-(23) provide a



Fig. 3. (a) The time independent part of the gauge pressure distribution Π5 Rð Þ Vs. the spatial coordinate for various squeeze numbers, (b) The function K σð Þ
Vs. the squeeze number.

Fig. 4. Comparison between dynamic responses (whose parameters appear in Table 1 and Table 2), obtained from the original model and from the
simplified model.
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good approximation for the slowly varying levitation force acting on a freely suspended object. Therefore, the equation of
motion describing the slow dynamics of the original system (Fig. 1) in absence of damping, can be formulated. This is done
by averaging the equation of motion (11) over one excitation period and substituting the averaged levitation force (22):

d2H

dT2 ¼ πr20paa
2K σ H

� �� �
mω2h30H

2 � g
ω2h0

: (24)

Obviously, here the levitated object is no longer taken as fixed and therefore K is a functional of σ which depends on the
slow evolution H.
3.2. Adding the effect of energy loss and damping

It is well known that the viscosity plays an important role in the phenomenon of near-field acoustic levitation [1,2]. Thus
it is clear that equation (24) needs to be supplemented by a term representing energy dissipation. This is done considering
only the contribution of the slow evolution, while the damping forces acting due to the rapid oscillations are omitted since
they affect merely the fast oscillations of the levitated object and the lost power at these frequencies is fed back by the
forced excitation.

For sake of calculating the damping force acting due to the slow evolution, small oscillations around a given nominal air-
gap hI ¼ h0HI , are considered. Consequently, small pressure variations around the averaged pressure distribution are
considered as well. Therefore, after averaging out the fast terms, the non-dimensional air-gap and pressure distribution take
the following forms:

H Tð Þ ¼HIþεβI ΔH Tð Þ; P R; Tð Þ ¼ 1þε2I Π5 σI ;Rð ÞþεβI ΔP R; Tð Þ (25)

where εI ¼ ε H ¼HI
� �¼ εH=HI ; σI ¼ σ H¼HI

� �¼ σH
2
=H2

I .
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Substitution of (25) into the non-dimensional Reynolds equation (10) yields the following equation:

∂
∂R

R HIþεβI ΔH

 �3

1þε2I Π5þεβI ΔP

 �∂ ε2I Π5þεβI ΔP


 �
∂R

0
@

1
A

¼ εβI σH
2
R
∂ ΔHþε2I Π5ΔHþHIΔPþεβI ΔHΔP

 �

∂T
: (26)

It can be seen that this equation can be balanced only if 0rβr2, while in order to strengthen the small displacements
assumption, and in order not to obviate the contribution of Π5, β¼ 2 is substituted into (26). After neglecting high order
terms, this equation yields the following modified form of the linearized Reynolds equation for compressible gas [6]:

O ε2I
� �

:
∂
∂R

R
∂ Π5þΔPð Þ

∂R

� �
¼ σIR

1
HI

dΔH
dT

þ∂ΔP
∂T

� �
: (27)

In order to solve (27), the following boundary and initial conditions are suggested:

ΔP R; Tð Þ
�� ��o1; ΔP R¼ 1; Tð Þ ¼ 0; ΔH T ¼ 0ð Þ ¼ 0; ΔP R; T ¼ 0ð Þ ¼ 0: (28)

The boundary conditions claim that the pressure variation is finite and that it equals to zero at the film’s edge, in order to
satisfy the boundary conditions (12). In addition, the initial conditions were chosen arbitrarily at the nominal state.

Due to the linearity of the problem, separation of variables is suggested:

ΔP R; Tð Þ ¼ ϒ Rð ÞΓ Tð Þ (29)

Substituting (29) into the homogenous equation that corresponds to (27), and solving the Sturm-Liouville problem obtained
using (28), provides the following eigenvalues and eigenfunctions:

αn ¼ j20;n; ϒn Rð Þ ¼ J0 j0;nR
� �

; n¼ 1;2;3;⋯ (30)

here j0;n stands for the nth zero of J0 Rð Þ which is the zeroth order Bessel function of the first kind.
Development of (27) in a generalized Fourier series using these eigenfunctions, transforms it into the following form:

X1
n ¼ 1

RJ0 j0;nR
� � dΓn

dT
þ j20;n AnþΓnð Þ

σI
þ 2
HIj0;nJ1 j0;n

� �dΔH
dT

" #
¼ 0 (31)

where An denote the constant generalized Fourier coefficients of Π5, and Γn are the time dependent generalized Fourier
coefficients of the pressure variation function ΔP.

Comparison of coefficients provides a single temporal ODE that depends on both Γn and ΔH. In order to relate these
functions so that an expression for the pressure variation function could be easily found for any given change in the air-gap,
Laplace transform is applied to this ODE. After imposing initial conditions, the abovementioned Laplace transform yields the
following expression, while ~� stands for the Laplace transform of �, and s is the Laplace variable:

~Γn sð Þ ¼ � sþ j20;n
σI

 !�1
2sΔ ~H

HIj0;nJ1 j0;n
� �þ j20;nAn

σIs

 !
: (32)

Based on former experiments and numerical simulations (e.g. [11, 13]), very low evolution frequencies are considered. Thus,
s-iΩ; Ω{Ωc is substituted into (32), as suggested by Griffin et al. [9], while Ω is the evolution frequency normalized by
the excitation frequency ω, and Ωc ¼ j20;1=σI is an approximated value of the non-dimensional cut-off frequency in which the
magnitudes of the spring and damping forces exerted by the film, are equal [8]. According to Blech [8] one can obtain
Griffin’s results by adding to the linearized Reynolds equation the assumption of incompressibility where σ-0. Clearly, this
approach is not valid here since σc1, and so the spirit of Griffin’s approach should be employed. Therefore, considering
frequencies below cut-off, one obtains:

~Γn iΩð Þ ¼ � iΩþ j20;n
σI

 !�1
2iΩΔ ~H

HIj0;nJ1 j0;nR
� �þ j20;nAn

σIiΩ

 !
�

Ω{Ωc
� 2σI

HIj
3
0;nJ1 j0;n

� �iΩΔ ~HþAn

iΩ

 !
: (33)

Substituting the inverse transform of (33) into (29) provides the complete expression of the pressure variation function, in
time:

ΔP R; Tð Þ ¼
X1
n ¼ 1

ϒn Rð ÞΓn Tð Þ ¼ �
X1
n ¼ 1

2σI J0 j0;nR
� �

HIj
3
0;nJ1 j0;n

� �dΔHdT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ΔP1 R;Tð Þ

�
X1
n ¼ 1

AnJ0 j0;nR
� �

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Π5 Rð Þ

: (34)

Finally, the damping force acting due to the slow evolution is calculated by integration on the total averaged pressure (inside
and outside the film), over the area of the levitated object. Here, due to the linearity of the problem, the contribution of the
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averaged levitation force vanishes, thus:

Fdamping ¼
Z 2π

0

Z 1

0
R P�1
� �

dRdθ¼ �2πε2I

Z 1

0
RΔP1 R; Tð ÞdR¼ �πσIε2I

8HI

dΔH
dT

¼ �3πμωr20a
2

2pah
4
0H

5
I

dΔH
dT

(35)

where Fdamping has been normalized by par
2
0.

Evidentially the damping force related to slow motion (35), depends on the rate of the slowly changing averaged air-gap.
It was mentioned above that the dominant frequency of the original system’s slow oscillations is much lower than the

cut-off frequency, as has been verified numerically and experimentally for a wide range of parameters. Consequently, and
according to Griffin et al. [9], HI can be referred to as the quasi-static part of H that varies in large amplitudes, while ΔH is the
variable part of H which as aforesaid changes much slower than the cut-off frequency. Therefore, and according to (25), the
following approximations can be used:

HI �H;
dΔH
dT

� 1
ε2I

dH
dT

� 1
ε2

dH
dT

: (36)

Supplementing the conservative equation of motion (24) with the damping force (35) under the assumptions (36), yields
the averaged equation of motion of the damped system:

d2H

dT2 ¼ CsK σ H
� �� �

H
2 �Cd

H
3

dH
dT

�G (37)

where the non-dimensional constants Cs;Cd;G are the followings:

Cs ¼
πr20paa

2

mω2h30
; Cd ¼

3πμr40
2mωh30

; G¼ g
ω2h0

: (38)

Eqs. (37), (38) represent the slow dynamics of an acoustically levitated object under the enforced fast oscillations indicated
by (3). The former is a nonlinear ordinary differential equation in terms of the slow evolution of the levitated object, which
is a function of the initial conditions and the fast driving excitation.

It is important to note that since we wish to examine large displacements of the levitated object, no local approximation
methods are implemented on (37) in the scope of this paper. I.e. all of the results shown in the following sections were
obtained by solving (37) numerically. Clearly, (37) can be solved for the steady-state levitation height by nulling all the
derivatives with respect to time. This would yield a transcendental equation that has to be solved numerically.
3.3. Numerical verification

It should be reminded that both steps of the development are based on the assumption that the non-dimensional
excitation amplitude ε is small. Therefore, as ε grows, all the asymptotic assumptions weaken and the accuracy of the
simplified model (37) deteriorates.

In order to evaluate the influence of the non-dimensional excitation amplitude, on the accuracy of (37), comparison to
the original model (10)-(12) seems appropriate. Indeed, Fig. 4 presents the dynamic responses of several different masses
levitated by the system whose parameters are specified in Table 1, as obtained numerically from the simplified model and
from the original model. Additionally, Table 2 summarises a few important characteristics of the responses appear in Fig. 4.
This table presents the maximal and the steady state non-dimensional excitation amplitude of each response and it also
shows the maximal and the steady state relative errors between the results.

The results presented in Fig. 4 and Table 2 show a very good correlation between the simplified model and the original
model. While clearly, since the simplified model considers merely the slow evolution of the levitated object, the results
obtained using this model don’t describe its fast oscillations which exist in the results obtained using the original model.
However, it can be seen that as the air-gap decreases, the accuracy of (37) deteriorates, as the non-dimensional excitation
amplitude increases. Further investigation shows that if the non-dimensional excitation amplitude stays below ε� 0:3
throughout the dynamic response, the errors between the models are negligible at steady state and also during the transient
response.

The whole development carried out above, was executed under the assumption that both the excitation amplitude and
the excitation frequency stay constant. However, one can notice that this development also holds when the excitation
Table 1
The physical parameters under which the simulations in Fig. 4 and Fig. 5 were carried out.

Radii of the excitation surface and the levitated object 10 mm
Excitation amplitude (nominal value in Fig. 5) 5 mm
Excitation frequency 28.5 kHz



Table 2
Important characteristics of the dynamic responses presented in Fig. 4.

Curve Mass [g] εss εmax Steady state error Maximal error

a 10 0.0725 0.1 0.1245% 0.3147%
b 20 0.0910 0.1 0.1842% 0.3469%
c 80 0.1596 0.2058 0.5232% 1.8782%
d 450 0.3516 0.6367 2.5224% 35.4566%

D. Ilssar, I. Bucher / Journal of Sound and Vibration 354 (2015) 154–166162
amplitude varies slowly such that:

dε
dT

{ε2: (39)

It can be seen from Table 2 that a typical value of the non-dimensional excitation amplitude is of order O 10�1

 �

. Therefore,
the condition (39) usually holds if the excitation amplitude varies more than one order of magnitude slower than the
excitation frequency. Fortunately, since the frequency of the slow oscillations complies with this criterion, such low
frequencies are sufficient for controlling the slow dynamics of the levitated object. And therefore the simplified model (37)
seems suitable for the considered applications.

Fig. 5 presents three dynamic responses which their parameters are specified in Table 1 and Table 3, as obtained from the
simplified model and from the original model (after adding necessary terms that consider the variation of the amplitude).
From this figure it is clear that the good correlation between the results is kept under time variant excitation amplitude,
assuming the abovementioned conditions are met.

4. Experimental validation

Validation of the simplified model developed in the previous section was carried out using the experimental setup
presented in Fig. 6. In this setup, the required excitation is provided by a driving levitation device that consists of two main
components. The first component is an off-shelf piezoelectric (Langevin) actuator that is designated to operate at
�28.5 kHz, in which it resonates at its first elastic longitudinal mode. The second component is an aluminium stepped
horn which produces mechanical amplification of the excitation amplitudes generated by the Langevin actuator. For sake of
efficiency, the horn was designed to resonate at its first elastic longitudinal mode, at the same frequency as the actuator. At
this designated frequency the horn magnifies the displacement at its base by 1:4.41.

Experiments show that while working in the vicinity of the designated frequency, the deformation of the excitation
surface is small. In the frequency range under which the experiments were carried out, the maximal deflection of this
surface was less than 8% of its piston-like displacement. Therefore, the configuration presented in Fig. 6 seems suitable for
verification of the theoretical model, which was derived under the assumption that the excitation surface vibrates
uniformly.

The abovementioned device was driven by a high voltage amplifier fed by a signal generator that allows controlling both
the amplitude and the frequency of the excitation. This device was used in order to levitate two different masses weighing
2.7 g and 7.91 g, while in order to satisfy the boundary conditions (12), the radii of these masses were chosen to be equal to
the radius of the excitation surface (10 mm).

Numerous experiments, in which the abovementioned round objects (masses) were levitated, under various constant
excitation amplitudes and frequencies, were carried out. During these experiments, the dynamic responses of the masses
were measured using a laser interferometer. Fig. 7 displays two representative examples, while the parameters under which
they were executed, are presented in Table 4. Fig. 7 also presents the corresponding responses obtained from the simplified
model (37) using the same parameters.

It is important to note that in each of the experiments, the non-dimensional excitation amplitude ε stayed below 0.15
throughout the dynamic response. Therefore, the corresponding responses obtained from (37) represent accurately the
exact solutions of Eqs. (10)-(12). And so, the comparison between the experimental results and the results obtained from
(37) is used in order to estimate the accuracy of the original Reynolds equation based physical model.

Fig. 8 presents the relative error between the steady-state levitation heights obtained from the experiments and from the
simplified model, as function of the steady-state height obtained experimentally. Here, the relative error was calculated
according to:

relative error¼ zss;experiment�zss;simulation

zss;experiment
U100%: (40)

From Fig. 8 it can be seen that the steady-state errors are very low. Additionally, one can notice a trend according to which
the error grows with the steady-state levitation height. While at low levitation heights, the model overestimates the real
steady-state height, and at significant heights it underestimates it. This trend is consistent with the results presented by
Wang et al. [13] which compared experimental steady-state levitation heights, to the values obtained by solving (10)-(12)
numerically.



Fig. 5. Comparison between dynamic responses (whose parameters appear in Table 1 and Table 3), obtained from the original model and from the
simplified model, under time variant excitation amplitudes.

Table 3
Supplementary parameters of the simulations appear in Fig. 5.

Curve Mass [g] Excitation amplitude [mm]

a 10 5þsin 150tð Þ
b 20 5þsin 400tð Þ
c 80 5þsin 1000tð Þ

Fig. 6. Schematic layout and photograph of the experimental setup.
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Fig. 7. Two representative dynamic responses (whose parameters appear in Table 4), obtained experimentally and theoretically using the simplified model
(before and after modification).

Table 4
The parameters under which the experiments and the simulations in Fig. 7 and Fig. 9 were carried out.

Example Mass [g] Excitation frequency [Hz] Excitation amplitude [mm]

a 2.7 28,350 4.93
b 7.91 28,350 5.16

Fig. 8. The relative error between the steady-state levitation heights obtained from the experiments and from the simplified model Vs. the steady-state
height obtained experimentally.
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Contrary to the very good agreement between experimental and the theoretical steady-state values, one can notice a
significant overestimation of the damping, which can be explained by two main reasons. The first reason is the fact that in
practice, in addition to its desired vertical motion, the levitated mass also undergoes lateral oscillations that cannot be fully
suppressed. These oscillations occur when the centre of the levitated mass is slightly displaced from the centre of the
excitation surface [14]. Additionally, due to the break of symmetry, the lateral oscillations give rise to an additional tilting
motion. The unwanted lateral and tilting motions result in energy leakage from the levitation mechanism, and therefore
they affect its behaviour.

The second reason responsible for the significant damping overestimation originate in the fact that Reynolds equation
refer to the flow inside the film as pure viscous. However, turbulence caused by the fast oscillations can weaken this
assumption and change the behaviour of the film [1].

In order to modify (37), so it will describe the behaviour of the system presented in Fig. 6 more accurately, a corrected
expression for damping coefficient Cd was sought – denoted as C0

d. For this sake, first, the corrected value that suits each of
the experiments was found by minimizing the norm between the envelope of each experimental response and the envelope
of its corresponding theoretical response. These envelopes were represented by fifth order polynomials found using linear
least squares on the local maximums of the responses. The corrected states of the representative examples shown in Fig. 7,
in which the values of C0

d are optimal, are presented in Fig. 9 along their envelopes. For comparison, this figure also presents
the corresponding experimental results alongside their envelopes.



Fig. 9. Calculation of the corrected damping coefficients for the two representative examples (whose parameters appear in Table 4), using envelope curve-
fitting.

Fig. 10. Finding the relation between the original and the corrected damping coefficients, using linear fitting.
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Fig. 10 presents the corrected damping coefficients obtained by implementing the abovementioned procedure on each of
the experiments, against their original values. From this figure it can be seen that the relation between the corrected and the
original damping coefficients can be approximated by a linear slope as following:

C0
d � 0:5076Cd: (41)

In addition to the experimental and the theoretical responses displayed in Fig. 7, this figure also presents the corresponding
responses obtained from (37) by using the corrected damping coefficients calculated according to (41). From this figure it
can be seen that the modification of the model improved the agreement with the experimental results significantly.
However, one can notice a moderate error estimating the frequency of the oscillations. This error is approximated between
10% – 30% and can be related to the same reasons that cause the damping overestimation.

5. Conclusions

It was shown that the dynamics of an acoustically levitated object can be represented as a superposition of slow and fast
processes. For applications of controlling the levitated object’s dynamics, the slow process is usually more important. Hence,
a simplified analytical model which describes merely the slow evolution of the levitated object was developed, following
two main steps. The first step of the development addresses merely to the conservative forces, and the second step relates
solely to the dissipative forces.

The second step of the development, in which the dissipative forces are calculated, considers only the slow evolution of
the system and ignores the fast oscillations of both the levitated object and the excitation surface. The latter implies that the
excitation form (i.e. the spatial deformation of the excitation surface), hardly affects the dissipative forces related to the slow
dynamics of the system.

Numerical validation of the simplified model developed in this paper was carried by comparison to the original, well-
known Reynolds equation based model. The comparison was carried out for the case where the excitation amplitude is
constant, and also for the case in which it varies relatively slowly in time. The good agreement of the latter suggests that the
simplified model can be used for applications of controlling the slow dynamics of an acoustically levitated object.
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Finally, an experimental validation of the simplified model was carried out, while due to the good agreement achieved in
the numerical verification, this validation was referred to as an examination of the original Reynolds equation based model.
It was shown that the theoretical models provide a reasonably good prediction of both the momentary frequency of the
slow oscillations, and the steady state levitation height. However, a significant, yet consistent, error was obtained in the
prediction of the damping force. Therefore, a single linear correction coefficient was determined for the dissipative term in
the abovementioned simplified model, what adjusted it to suit the system on which the experiments were performed. From
the good agreement between the experiments and the results obtained using the modified model, it is implied that the
simplified model developed in this paper can be adjusted empirically. That in order to describe other setups which complies
with the assumptions presented in sections 2, 3.

Finally, it is the authors’ opinion that despite the deviation of the experiments from the theoretical results, the Reynolds
equation based model and its simplification presented in this paper are useable for design and for assessing the dynamical
performance of acoustically levitated objects.
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