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Abstract

The behaviour of drops in an acoustic levitator is simulated numerically. The ultrasound field is directed
along the axis of gravity, the motion of the drop is supposed to be axisymmetric.The flow inside the drop is
assumed inviscid (since the time intervals considered are short) and incompressible.
First, as a test case, we consider a stationary ultrasound wave. We observe, as in previous experimental

and theoretical works, that stable drop equilibrium shapes exist for acoustic Bond numbers up to a critical
value. The critical value depends on the dimensionless wave number of the ultrasound. Beyond the critical
value, we still observe equilibrium drop shapes, but they are not purely convex (i.e. ‘‘dog-bone’’ shaped)
and found to be unstable.
Next we modulate the ultrasound pressure level (SPL) with a frequency x2, which is comparable to the

first few drop resonance frequencies, and a small modulation amplitude. Simulations and experiments are
performed and compared; the agreement is very good. We further on investigate numerically the more
general case of an arbitrary x2 (still comparable to the first few drop resonance frequencies, yet). A very
rich drop dynamics is obtained. We observe that a resonant drop break-up can be triggered by an ap-
propriate choice of the modulation frequency. The drop then disintegrates although the acoustic Bond
number remains below its critical value.
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Finally we change the modulation frequency linearly with time, sweeping over a window containing
the drop’s first eigenfrequency xðresÞ

2 . After x2 has crossed xðresÞ
2 , in the range of validity of the inviscid

approximation, the drop equatorial radius oscillates between well-defined saturation values. For small
modulations the range of oscillation grows linearly with the modulation amplitude. For larger modulations,
however, a substantial increase in the oscillation range of the drop equatorial radius is observed in the case
of down-sweep; the increase does not occur in up-sweeps of the modulation frequency. We compare our
results with experimental findings and in particular the so-called jump phenomenon, as well as with ex-
perimental and numerical results from the literature. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Acoustic levitators are a useful tool to suspend a drop without contact. This is interesting in
connection with several industrial applications, e.g. containerless material processing, dryers or
chemical reactors, etc. Ultrasound can also be used to atomize drops in a surrounding gas or to
disperse them in a surrounding (immiscible) liquid.
The behaviour of drops in ultrasonic levitators is governed by the interaction between gravity

and capillary forces, as well as the sound radiation pressure. From this it can already be seen what
dimensionless groups are essential here, e.g. the gravitational Bond number, relating gravity to
capillary effects, and the acoustic Bond number, relating acoustic to capillary effects.
To levitate a drop, the ultrasound has to be sufficiently strong to overcome gravity, otherwise

the drop falls down. If the sound pressure level is too high, though, the drop disintegrates into
small droplets, since then the capillary forces become too weak to keep the drop intact. Anilkumar
et al. (1993) determined experimentally the critical acoustic Bond number, up to which stable
static drop shapes occur, for several wave numbers of the ultrasound. The theoretical analysis by
Lee et al. (1994) did not take gravity into account and underestimated the experimental values of
the critical acoustic Bond number by about 13–20%.
For intermediate ultrasound pressure levels there are (stable) equilibrium drop shapes and

positions, when the drops are steady and non-oscillating. These drop shapes deviate somewhat
from a sphere, leading to a shift of the drop oscillation eigenfrequencies. For free drop oscilla-
tions, i.e. drops in the absence of gravity and acoustic field, Rayleigh found for low amplitude
oscillations of spherical inviscid drops the eigenfrequencies of both axisymmetric and non-axi-
symmetric modes with lP 2 (see e.g. Lamb, 1932; Landau and Lifshitz, 1987)

xðRayÞ
l ¼ lðl� 1Þðlþ 2Þr

qR3

� �1=2
; ð1Þ

where l is the mode number, r and q denote, respectively, the surface tension and the density of
the fluid, and R the drop radius.
Eq. (1) is connected with a ð2lþ 1Þ-fold degeneracy of the frequency spectrum, which means

that for a given l the axisymmetric mode m ¼ 0 has the same frequency xðRayÞ
l as all the corre-

sponding 2l non-axisymmetric modes with 0 < jmj6 l (Landau and Lifshitz, 1987). Eq. (1) yields
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e.g. for water drops of R ¼ 1 mm a frequency fl ¼ xl=ð2pÞ � 121 Hz for l ¼ 2. This is much
smaller than typical ultrasound frequencies fUS ¼ xUS=ð2pÞ, which in any case are beyond 20 kHz.
As reported by Shi and Apfel (1995) for an axisymmetric ‘‘pulsation’’ mode with l ¼ 2 and

m ¼ 0, the shift of the eigenfrequency xðresÞ
2 due to distortion of the drop equilibrium shape is

positive (though small), i.e. towards larger eigenfrequencies, if the acoustic distortion of the drop
from its spherical shape is small; the shift is negative, however, for larger distortions of the drop.
Experimentally it was found in a low gravity environment (Trinh et al., 1996) that the eigenfre-
quency xðresÞ

2 of the axisymmetric mode always decreases due to the drop squeezing by the acoustic
field. The shift of the eigenfrequencies due to non-linear effects, i.e. to the coupling of different
oscillation modes, was studied by Tsamopoulos and Brown (1983). They found a decrease of the
eigenfrequencies xðresÞ

2 with the square of the oscillation amplitude.
Droplet oscillations in a static sound field were recently studied by Murray and Heister (1999)

under the assumption that the droplet radius was much smaller than the sound wavelength, and as
a result, the gas motion was effectively incompressible. This restrictive assumption does not hold
in many experiments with acoustic levitators, and a more general approach employing the
Helmholtz equation instead of the Laplace equation is desirable to describe the gas motion.
Secondary streaming flows resulting from gas or droplet oscillations were recently studied by

Lyell (1996), Yarin et al. (1999) and Yarin (2001). These effects involving viscous stresses are out
of scope of the present work.
Note that Anilkumar et al. (1993) and Lee et al. (1994) reported on two equilibrium shapes for

a given set of parameters in several cases of acoustic Bond numbers below the critical value. The
two equilibrium shapes were distinguished by the equatorial radius of the drop; the drop with the
smaller equatorial radius was purely convex, the one with the larger equatorial radius, however,
had a ‘‘dog-bone’’-like shape, its surface was thus partially concave. Both equilibrium shapes were
apparently stable. However, using a projection of the phase space corresponding to the drop
dynamics, Feng and Su (1997) argued that among the two drop shapes only one should be stable.
The instability of the other corresponds to a saddle point in the projection of the phase space, in
the neighbourhood of which the motion in the projection of the phase space is substantially
slowed down. Some care is needed nevertheless in using this kind of argument, since their con-
sideration only uses a projection of the phase space, not the whole phase space. A ‘‘separatrix’’ in
the projection is therefore not necessarily separating different domains, but may be crossed (in the
projection only!) by trajectories via the dimensions of the phase space which are excluded in the
projection.
Modulation of the ultrasound offers additional possibilities to control the dynamics of free

liquid surfaces and to intensify heat and mass transfer between levitated droplets and their en-
vironment. Marston and Apfel (1979, 1980), Trinh et al. (1982) and Trinh and Wang (1982)
modulated the acoustic field in immiscible liquid–liquid systems, Marston and Goosby (1985)
achieved drop breakup in modulated acoustic fields in liquid–liquid systems, Trinh et al. (1996)
and Trinh et al. (1998) used it to excite particular modes of drop oscillations in the electrostatic
levitator, whereas Marr-Lyon et al. (1997) used it to stabilize a liquid bridge.
Trinh and Wang (1982) and Daidzic et al. (1994) modulated the sound field linearly with time.

The lowest eigenfrequency of the drop was within the interval swept. Trinh and Wang (1982)
explored the resonance curves of the drop oscillation for different excitation amplitudes. Inter-
estingly enough, they got an increase of the lowest drop eigenfrequency xðresÞ

2 with an increase of
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the oscillation amplitude, if the driving was provided by modulation of the single standing ul-
trasound wave; the opposite was obtained when the driving was performed by modulation of a
higher harmonic added to the basic ultrasound wave. Nothing is reported on a possible hysteresis,
though. The experimental data obtained in Daidzic et al. (1994) are not easy to compare with
theoretical results, since several parameters that are important from the physical point of view,
e.g. sound pressure level, modulation amplitude, etc., are virtually not known. Furthermore, the
amplitude of the sound generated depends linearly on the voltage at the generator only within a
limited range. Therefore a linear modulation of the sound generator voltage does not necessarily
lead to a linear modulation of the ultrasound pressure. This makes it difficult to interpret or even
to reproduce the results of Daidzic et al. (1994).
The aim of the present work is to study the dynamics of droplet oscillations in the modulated

acoustic field. The experimental equipment used to check the numerical results is presented in
Section 2. The mathematical problem is posed in Section 3. Effects of the static acoustic field are
numerically considered in Section 4 as test cases. Section 5 deals with the acoustic field effects in
the case of a constant modulation frequency. In Section 6 the results are compared with exper-
imental findings. Sweeping of the modulation frequency in time is treated in Section 7. The
conclusions are presented in Section 8.

2. Experimental procedure

For the experiments, the ultrasonic levitator already used by Yarin et al. (1999) was employed
together with an image analysis system for determining the droplet shape. The whole experimental
apparatus is sketched in Fig. 1. The ultrasonic levitator supplied by Batelle Frankfurt (Germany)
is characterized by the vibration frequency of the ultrasound transducer of 56 kHz. This frequency
corresponds to the nominal sound wavelength k0 ¼ 6:1 mm at an unperturbed air temperature
T0 ¼ 293 K, where the unperturbed sound velocity in air is c0 ¼ 343:8 m/s. It was shown in Yarin
et al. (1998) that the harmonic content of the acoustic field in the levitator may be approximated
safely by a single standing harmonic wave. The ultrasound waves are reflected from the concave
surface of a round reflector plate positioned opposite the transducer at a distance of 28.6 mm,
which is appropriate to allow the formation of eight pressure nodes in this resonator. The distance

Fig. 1. Sketch of the experimental apparatus.
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between the transducer and the reflector could be adjusted. The relative positions of the trans-
ducer and reflector were kept constant throughout the measurements, and no active control of the
sound pressure level (SPL) was applied. Note that in the present case additional interactions
between the droplet and the sound field, resulting from the finite dimensions of the chamber,
which could destabilize positioning of the droplet (Rudnick and Barmatz, 1990; Feng and Su,
1997) were insignificant.
The droplets to be investigated were produced using a microlitre syringe. The desired drop

volume was realized with an uncertainty of �0:05 ll. For producing the drop, the liquid was
sucked into the syringe, and the volume of liquid representing the initial drop volume was pressed
out of the syringe needle after it has been put close to the ultrasonic resonator. The drop was then
inserted into the ultrasonic field, where the SPL had to be raised to overcome the adhesion forces
which attach the drop to the needle. After the subsequent adjustment of the appropriate steady
SPL at which the experiment was to be conducted, the drop was ready for the measurements. The
SPL was determined from the aspect ratio of the drop shape for a given liquid and drop volume
(cf. Yarin et al., 1998).
Oscillations of the droplet shape were obtained by a sinusoidal modulation of the amplitude A0

of the incident pressure field with angular frequency x2 as described by

AðeffÞ
0 ¼ A0ð1þ e sin x2tÞ with 0 < e 	 1: ð2Þ

The modulation of the SPL was achieved by driving the ultrasound transducer of the levitator
with an amplitude-modulated electrical signal. This signal was produced by a waveform generator
Yokogawa AG 1200. The frequency of the amplitude modulation was approximately the same as
the eigenfrequency for the desired mode calculated by Eq. (1).
For determining the droplet shapes an imaging system was used. The particular parts of the

system were a CCD video camera with macrolens and a PC equipped with a frame-grabber card
and the software OPTIMAS. For imaging, the drop was illuminated from behind using a light-
emitting diode (LED). The LED was triggered by a TTL signal generated by the waveform
generator synchronous to the signal which drove the transducer. The LED yielded high-intensity
light flashes with the length of 10 ls. This was short enough to ensure sufficiently sharp images of
the droplet even when the surface velocities were largest. The trigger signal was coupled with the
amplitude modulation. Thus the droplet was illuminated always in the same state of deformation
in the oscillating period. To obtain droplet shapes at different deformation states, the phase shift
between the amplitude modulation and the LED trigger signal was varied.
As a working fluid n-hexadecane C16H34 has been used. Since the evaporation of n-hexadecane

droplets is significant only at time scales of hours, there was no need to visualize all shapes for one
sequence of images during one and the same oscillation period. The procedure to visualize all
shapes representing one complete oscillation was as follows: After recording the shape at one
instant, the phase shift between the amplitude modulation of the SPL and the trigger signal for the
LED was altered to visualize and record a different state of deformation. The time between two
shape acquisitions was about 15 s. A full sequence was made up of 15 measurements, so that the
overall time for visualizing one sequence of images as shown in Fig. 2 was 225 s, although they
actually cover the oscillation period T ¼ 12:5 ms. Since this is a short time interval compared to
the time scale of evaporation, there was no need to account for changes of the drop volume or
aspect ratio by adapting the SPL modulation frequency or amplitude. In Yarin et al. (1999) it was
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shown that liquid vapour from the droplet is accumulated in the toroidal vortices induced by the
ultrasonic standing wave above and below the droplet equator. To obtain a controlled droplet
environment with respect to concentration of liquid vapour (and therefore the droplet tempera-
ture), these vortices had to be ventilated using a slight air flow directed towards the droplet. Since
the present n-hexadecane droplet does not evaporate significantly, such measures for regulating
vapour concentration were unnecessary. The air around the levitated droplet in the box shown in
Fig. 1 was kept at the lowest possible relative humidity below 1%.
The drop was imaged using a large magnification factor, which was determined before the

measurement series by imaging a high-precision microscale etched on a glass plate. The image
analysis software provides detailed information on the visible meridional section of the drop. The
data consist of the coordinates of points of the imaged droplet contour, the lengths of the major
and minor semiaxes b and a and the aspect ratio b=a of the ellipse which approximates the drop
shape. If the droplet image was ideally sharp, the accuracy of such an approximation was better
than 2% in the representation of the major and minor semiaxes. Maximum sharpness was ob-

Fig. 2. Images of an n-hexadecane droplet in the mode l ¼ 2 (dimensional volume 5.18 ll, b=a ¼ 1:4) at different states
of deformation. T ¼ 12:5 ms represents the period of one full droplet oscillation. Maximum oblate deformation is at

t=T ¼ 0:07 and maximum prolate deformation is at t=T ¼ 0:57.
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tained when the droplet was in the extreme states of deformation, where surface velocities vanish.
In the intermediate stages between the two shapes of extreme deformation, the velocity of the
droplet surface has a maximum. At these stages the droplet shape was slightly blurred, and
therefore the accuracy in determining the minor and major axes as well as the captured droplet
shape was slightly less than perfect. The accuracy here was of the order of 5%. Images of different
states of deformation during the oscillation of an n-hexadecane droplet with a volume of 5.18 ll,
which corresponds to R ¼ 1:07 mm, and an unperturbed aspect ratio of 1.4 are depicted in Fig. 2.
The various instants in the oscillation period to which the images correspond are represented by
the non-dimensional time t=T , where T is the duration of the oscillation period of 12.5 ms in this
experiment. The slightly varying sharpness of the droplet contour can be seen. The images are
sharpest along the whole meridional circumference at t=T ¼ 0:07 (maximum deformed oblate
shape) and t=T ¼ 0:57 (maximum deformed prolate shape), whereas all other images are slightly
blurred due to the surface motion. Maximum blurred droplet contours can be seen at t=T ¼ 0:28
and 0.78, when the droplet is in the mid-stage between the maximum oblate and prolate ellipsoidal
shape and exhibits maximum surface velocities.

3. Formulation of the problem

We consider the behaviour of a drop under the influence of an external ultrasound field. Surface
tension and gravity are taken into account, whereas liquid compressibility and viscous effects are
neglected. The latter assumption imposes a restriction on the time interval when the inviscid
approximation holds and viscous effects are still unable to damp out the oscillation mode cor-
responding to the lowest eigenfrequency. An estimation of the time interval will be given in
Section 4.2.
The velocity field u is therefore irrotational and contains neither sources nor sinks; it can be

described by a scalar potential U as per

u ¼ gradU ð3Þ
with

DU ¼ 0: ð4Þ
The non-steady Bernoulli integral evaluated at the surface of the drop can be transcribed to

DU
Dt

¼ 1
2
ðgradUÞ2 � gz� p

q
; ð5Þ

where D=Dt ¼ o=ot þ u 
 grad stands for the material time derivative, g denotes the acceleration
due to gravity in (�z)-direction. The pressure p in the liquid is due to the capillary pressure and the
radiation pressure of the ultrasound field:

p ¼ pcap þ prad ð6Þ
with

pcap ¼ r
1

R1

�
þ 1

R2

�
; ð7Þ
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where R1 and R2 are the curvature radii of the drop surface. The frequency of the ultrasound is
much larger than the first eigenfrequencies of the drop. The latter thus ‘‘feels’’ only the temporal
mean of the acoustic pressure field, i.e.

prad ¼
1

2
ðq0c20Þ

�1hp02i � 1
2
q0hv02i þ higher order terms; ð8Þ

with q0 being the density of the ambient gas. Also v0 is the speed of the gas due to sound wave
propagation, acute brackets denote time average and primes amplitudes of oscillation.
In (8) v0 can be expressed by the pressure fluctuation in the gas p0 via

hv02i ¼ x�2
USq

�2
0 hðgradp0Þ2i; ð9Þ

where xUS is the angular frequency by the ultrasound. The sound field is composed by an incident
field pinc and a scattered field pscat

p0 ¼ pinc þ pscat: ð10Þ

Both pinc and pscat (as well as their sum p0) satisfy the Helmholtz equation

ðD þ k2Þp0 ¼ 0 ð11Þ

with the wave number k ¼ xUS=c0, subject to the boundary conditions,

op0

on
¼ 0 at the drop surface ð12Þ

and

p0 ! pinc at infinity: ð13Þ

We assume cylindrical symmetry of the whole process. We thus only have to care about the
radial and axial coordinates x and z, respectively, where x is restricted to positive values. In our
considerations the incident sound wave is a standing wave in z-direction with an antinode at z ¼ 0.
Thus, if gravity were negligibly small, stable equilibrium positions could be found at

z ¼ n
�

þ 1
2

�
p
k
; ð14Þ

n being any integer.
We relate lengths to the volume equivalent drop radius R, velocities to (gR)1=2, time to (R=g)1=2,

and the velocity potential to (gR3)1=2. The Bernoulli integral (5) in the non-dimensional form reads
(neglecting higher order terms in the radiation pressure)

DU
Dt

¼ 1
2
ðgradUÞ2 � z� S

1

R1

�
þ 1

R2

�
� 1
2
SBafhp02i � j�2hðgradp0Þ2ig: ð15Þ

The following dimensionless groups are involved: the inverse gravitational Bond number

S ¼ r
qgR2

; ð16Þ

the acoustic Bond number
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Ba ¼
A20R

q0c20r
ð17Þ

(where A0 denotes the amplitude of the incident pressure field pinc), and the non-dimensional wave
number of the ultrasound

j ¼ kR: ð18Þ
The assumption that j 	 1 is not made in the present work, and therefore the Helmholtz

equation (11) is not replaced by the Laplace equation, as it has been done by Murray and Heister
(1999).
Later on, we will neglect gravity, considering droplet oscillations and break-up. We then

render time non-dimensional by ðqR3=rÞ1=2, velocities by ðqR=rÞ�1=2, and the velocity potential by
ðrR=qÞ1=2. The Bernoulli integral then reads (higher order terms in the radiation pressure again
neglected)

DU
Dt

¼ 1
2
ðgradUÞ2 � 1

R1

�
þ 1

R2

�
� 1
2
Bafhp02i � j�2hðgradp0Þ2ig: ð19Þ

The evolution of the free surface shape is governed by the kinematic condition

Dx

Dt
¼ gradU: ð20Þ

We want to simulate numerically the evolution of the free surface itself (i.e. its x- and z-
coordinates) as well as of the potential U at the free surface according to Eq. (20) and Eqs. (15) or
(19), respectively. We make use of a boundary-element method to determine the normal derivative
oU=on at the surface of the drop from the integral equation

UðxÞ ¼
Z

Gðx;x0Þ oU
on0

�
� Uðx0Þ oGðx; x

0Þ
on0

�
dA0; ð21Þ

if x is on the surface of the drop. U is known on the drop surface. The integration expands over
the surface of the drop. Also dA0 denotes the surface element of the drop at x0, n0 the outer unit
normal vector at x0, and G Green’s function for the Laplacian. Details on the numerical method
including analytical integration in the azimuthal direction can be found elsewhere (Becker, 1992;
Weiss and Yarin, 1999).
The distribution of the radiation pressure prad is determined via Eq. (8) with the higher order

terms neglected and using Eqs. (9)–(11). The scattered pressure distribution pscat is calculated from
the known incident field pinc by solving the integral equation

pscatðxÞ ¼
Z

pscatðx0Þ oHðx; x0Þ
on0

�
þ Hðx; x0Þ opinc

on0

�
dA0; ð22Þ

where use has been made of the boundary condition (12). As in (21), the integration expands over
the surface of the drop. H denotes the (complex-valued) Green function for the operator ðD þ k2Þ.
Details are given in Yarin et al. (1998).
The numerical solution of Eq. (21) has been tested against existing analytical solutions for

small amplitude oscillations, as well as for non-linear droplet oscillations. In particular, it has

A.L. Yarin et al. / International Journal of Multiphase Flow 28 (2002) 887–910 895



reproduced very accurately the results for free non-linear oscillations shown in Fig. 3 of Lundgren
and Mansour (1988), as well as some data of Shi and Apfel (1996) and Lee et al. (1994) briefly
discussed in Section 4.1 and of Feng and Su (1997) in Section 4.2. The numerical solution of Eq.
(22) has been tested in Section 3 of Yarin et al. (1998) against existing analytical results for
acoustic scattering from a solid sphere and for levitation force acting on it, and showed high
accuracy.

4. Static sound field: test cases

We consider here the behaviour of drops in an ultrasound field with a spectrum that contains
only frequencies that are very large as compared to the first eigenfrequencies of the axisymmetric
drop oscillations. This is what is meant here by a static sound field.

4.1. Equilibrium shapes

The predicted equilibrium drop shapes (oblate spheroid-like and ‘‘dog-bone’’-like) were found
to be in agreement with the theoretical results of Lee et al. (1994) and with the experimental data
of Anilkumar et al. (1993). In particular, in the results of this section drop disintegration occurs
via pinching-off of a torus-shaped volume at the equator, for example for Ba ¼ 2:25 and 2.5. For
acoustically small drops ðj ¼ 0:30Þ and without gravity this was also observed numerically by Shi
et al. (1995) and experimentally by Anilkumar et al. (1993). In the cases considered here, we
did not observed any breaking membrane within a liquid torus, as shown in Section 5 below for
modulated ultrasound. The torus-shaped volume at the equator has a cross-sectional radius
rt � 0:001 for Ba ¼ 2:25 and 2.5 (rt is rendered dimensionless by R). According to Rayleigh’s
theory of capillary instability, the torus should disintegrate into fragments corresponding to the
fastest growing mode v� ¼ 0:697 (Chandrasekhar, 1961). Since the dimensionless wave number v�

of the capillary instability is v� ¼ 2prt=K�, where K� is the wave length, the fragment length is

Fig. 3. The equatorial radius as a function of time for j ¼ 0:575, Ba ¼ 2:15, e ¼ 0:02, and x2 ¼ 2:0.
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K� ¼ 2prt=0:697, and the volume, accordingly, is equal to pr2t ð2prt=0:697Þ � 28:3� 10�9. The
corresponding growth rate of the perturbations is c � 0:343 ðSr�3t Þ1=2 (Chandrasekhar, 1961, we
use (R=g)1=2 as the time unit). With S � 2 therefore, the characteristic dimensionless time of the
capillary instability of the shedded liquid torus is c�1 � 65� 10�6. This is virtually instanta-
neously, since the dimensionless time relevant for the drop dynamics is much larger ðt ¼ Oð1ÞÞ.
Such a capillary break-up leading to the appearance of a number of fine secondary droplets in a
ring-like region about the equator of the primary droplet actually means a loss of the axial
symmetry of the flow.

4.2. Drop oscillations

We now consider the behaviour of drops that have shapes different from equilibrium ones at the
beginning. In practice, this case is much more important, since the drops have to be put somehow
into the ultrasound field, and in general they do not possess equilibrium shapes at that moment.
So they start to oscillate.
The time unit is now T0 ¼ ðqR3=rÞ1=2, since we do not account for gravity. According to Lamb

(1932) and Becker et al. (1991) viscosity l damps the lowest eigenmode of the free oscillations of a
droplet on the time scale T2 ¼ qR2=ð5lÞ. Denoting t� and t dimensional and dimensionless time,
respectively, we estimate for the time interval, where the inviscid approximation holds, as t� < T2.
Therefore, it holds when

t <
ðqrRÞ1=2

5l
: ð23Þ

Substituting the data for an n-hexadecane droplet of R ¼ 1:07 mm, q ¼ 775 kg/m3, r ¼ 27:7
mN/m and l ¼ 3:51 mPa s (the physical quantities taken at 20 �C), we obtain from (23) that the
inviscid approximation holds for about t < 10, which corresponds to t� < 50 ms. Therefore, all
inviscid results corresponding, say, to 06 t < 10 practically cannot be modified by viscous effects.
During this time interval the oscillation mode corresponding to the lowest eigenfrequency is still
unaffected by viscous effects, and practically there is no need to account for them. If we consider
nevertheless drop oscillations beyond t ¼ 10 in some cases later in this paper, this is to obtain
information on a limiting behaviour; if a drop break-up or a blow-up of the oscillation amplitude
does not occur even in the inviscid approximation, it will definitely not occur either if viscous
effects are taken into account. Moreover, since the inviscid model keeps all the modes (with lP 2)
undamped, the fact that a droplet does not disintegrate in theory definitely means that it does
not disintegrate in reality either when damping is present. The same inviscid approximation
was used to describe droplet oscillations in Tsamopoulos and Brown (1983) and Pelekasis et al.
(1991).
In the simulations we put an ellipsoidal drop into the levitator. We mainly confirmed the results

of Feng and Su (1997) on droplet oscillation and break-up in a static sound field. The results can
be summarized by the statement that all equilibrium drop shapes found with an equatorial radius
b below 1.8 are stable, and their small perturbation leads to oscillations, whereas all drop shapes
with b beyond 1.8, in particular the dog-bone-like shapes, are unstable; their perturbation leads to
break-up.
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5. Monochromatically modulated ultrasound

We now modulate the amplitude A0 of the ultrasound in time with an angular frequency x2

which is comparable to the first eigenfrequencies of the axisymmetric drop oscillations, accord-
ing to

AðeffÞ
0 ¼ A0ð1þ e sin x2tÞ with 0 < e 	 1: ð24Þ

We use j ¼ 0:575 throughout the section and neglect gravity here, therefore in the dimen-
sionless variables sketched in Section 3 the angular frequency of the first resonance of a spherical
drop in the linear regime becomes (Lamb (1932), cf. (1) with l ¼ 2)

xðRayÞ
2 ¼ 81=2 � 2:828: ð25Þ

For the following calculations we take an acoustic Bond number (based on A0) Ba ¼ 2:15.
Starting from this value, we determine equilibrium drop shapes for different stationary sound
amplitudes A0ð1þ eÞ and find stable equilibrium drop shapes up to e ¼ 0:08, whereas we do not
find any (for stationary ultrasound) for e P 0:09. This corresponds to a critical acoustic Bond
number BðcritÞ

a ¼ 2:15ð1þ 0:09Þ2 � 2:55 and is in agreement, indeed, with the findings of Section
4.1, where the critical Bond number for j � 0:58 was slightly above 2.50. The simulations using a
modulated sound field always start from the equilibrium drop shape obtained for e ¼ 0.
In the absence of gravity the drop shape, due to obvious reasons, should be symmetric with

respect to its equatorial plane throughout the oscillations, and the droplet centre should be lo-
cated at the pressure node all the time. The code indeed reproduces this behaviour.
By weakly modulating the sound pressure amplitude with x2 close to the first eigenfrequency

xðresÞ
2 of the drop, we typically obtain a beat between the eigenfrequency and x2. Fig. 3 shows the
equatorial radius of the drop under a modulation with e ¼ 0:02 and x2 ¼ 2:00. Definitely the
small viscosity helps to damp out later on the oscillation mode corresponding to the eigenfre-
quency, and the beat will disappear. This fact, however, is unimportant in the present context,
since if the droplet does not disintegrate before the viscous effects come into play, it will definitely
not disintegrate later on either. Therefore, the inviscid approximation valid until t < 10 allows us
to find the most dangerous oscillations of the droplet and clarify whether it breaks up or not.
By increasing the modulation amplitude very slightly to e ¼ 0:04, which is still below the critical

value 0.09 for e given above for the static case, a resonance-like behaviour can be excited. It leads
to permanently growing non-linear oscillations (Fig. 4), and the drop finally disintegrates in the
range of validity of the inviscid approximation in a similar manner as in the case of a static sound
field. Non-linear effects can be observed in the same way by applying a modulation frequency x2

which is (nearly) equal to the drop’s eigenfrequency xðresÞ
2 or xðRayÞ

2 . The discussion at the be-
ginning of Section 6 will show that in such cases non-linear resonant effects could easily overbear
viscous damping, and the restriction of Eq. (23) can be eased.
In Fig. 5 we show which values of the maximum of the equatorial radius bmax over the oscil-

lations of the drop correspond to different e and x2, and when droplet break-up takes place. For
one and the same modulation amplitude e several windows can be found, where the drop breaks
up or remains intact. One may speculate on the nature of the boundary in the diagram, separating
‘‘lethal’’ configurations for the drop from such that are survived. There are parameter configu-
rations with e ¼ 0:10 and beyond that do not lead to drop break-up, if an ultrasound field is
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modulated with an appropriate frequency x2. Bearing in mind that at x2 ¼ 0 no stable droplet
configurations could be found with e > 0:09, we can state that modulation of the acoustic field by
x2 6¼ 0 may yield a dynamic stabilization of droplets preventing their break-up. In particular, if x2

is sufficiently high, the drop dynamics becomes very complicated and rich, but the drop does not
necessarily disintegrate (at least within times considered during the simulations, which cover the
range of validity of the inviscid approximation; viscous effects definitely cannot change this fact).

Fig. 4. The equatorial radius as a function of time for j ¼ 0:575, Ba ¼ 2:15, e ¼ 0:04, and x2 ¼ 2:0.

Fig. 5. Parameter configurations (e, x2) that lead to drop break-up are marked by a cross; configurations that lead to

drop oscillations are labelled by a symbol that indicates the maximum equatorial radius bmax during the oscillation.
Fig. 5b is an enlarged detail from Fig. 5a; it can be concluded that the first drop eigenfrequency xðresÞ

2 decreases with

increasing modulation amplitude e or oscillation amplitude.
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Drop break-up under the influence of ultrasound modulation occurs in most cases in a way
which is analogous to the one sketched above for static ultrasound field, i.e. by squeezing the drop
and pinching-off a torus-shaped liquid volume at the equator. Such a scenario is presented in
Fig. 4.
Under particular conditions, another break-up scenario than described above can be observed.

In this case the drop is squeezed to some extent, it then develops to a shape similar to a ring with a
thin membrane in it. The membrane can break, causing a topological change of the drop volume.
Our simulation then breaks down. After all, it is to be expected that in reality the break-up process
of the membrane will break the cylindrical symmetry initially imposed to the problem. The break-
up scenario described here is rather similar to one that has been observed experimentally, but for a
static ultrasound field (Anilkumar et al., 1993). It should also be noted that Marston and Goosby
(1985), in their experiments with liquid–liquid systems in modulated sound field, demonstrated
still another break-up mode: via fissioning into two drops by pinching off at the equator. In their
experiments equilibrium shapes tended to be prolate (instead of oblate in the present work), which
might be the reason for the break-up mode.
It is emphasized that the eigenfrequency of the drop depends on the modulation amplitude e

or, equivalently, the oscillation amplitude. For e ¼ 0:010 we found xðresÞ
2 � 2:20, whereas for

e ¼ 0:012 we obtained xðresÞ
2 � 2:15. This is another manifestation of the non-linear effects and in

qualitative agreement with Trinh et al. (1996) as well as with Tsamopoulos and Brown (1983). It
has the effect that the drop does not necessarily disintegrate even if the ultrasound field is mod-
ulated with a small (enough) amplitude and with the drop’s eigenfrequency xðresÞ

2 , even though no
dissipation and no damping is included at this time range. Moreover, the drop will not disinte-
grate when viscous effects manifest themselves.
The dynamics of the drop becomes apparently more complicated as the modulation amplitude

is increased while x2 kept well away from the eigenfrequencies xðresÞ
l . This can produce functions

bðtÞ where a non-trivial pattern is repeated several times virtually without modifications, see e.g.
Fig. 6a (in the range of validity of the inviscid approximation), where a pattern of about Dt ¼ 8:57
is repeated several times. These quasi-periodic cases are steps towards an even more complicated
drop dynamics that occurs in particular at higher modulation frequencies; in the example is shown
in Fig. 6b (also in the range of validity of the inviscid approximation), no periodicity at all can be
recognized. Note also that the pattern in Fig. 6a seemingly corresponds to a case of subharmonic
resonance between the driving frequency x2 ¼ 1:5 and its subharmonic x2=2 ¼ 0:75. As a result,
periodicity with Dt ¼ 2p=0:75 � 8:37 should arise, which is close to the value of Dt ¼ 8:57 in Fig.
6a. A similar subharmonic resonance has been observed in the context of the forced oscillations of
bubbles in Hall and Seminara (1980).

6. Oscillations of droplets levitated in monochromatically modulated acoustic field: comparison of
calculated and measured shapes

In the experiment described in Section 2 the frequency of the amplitude modulation was taken
the same as the eigenfrequency xðRayÞ

2 . If a droplet were just a linear oscillator without viscous
damping, it would show resonant oscillations of permanently growing amplitude at the excitation
frequency leading to its break-up. In a sense, this could be a scenario similar to that of Fig. 4. In
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this case all the other eigenmodes would just be overshadowed by the excited one. In reality,
however, two effects counteract resonance break-up: (i) viscous damping, and (ii) the mechanism
described in Section 5, when non-linearity at large amplitudes shifts the eigenfrequency and
permanently detunes the droplet from resonance. Under appropriate conditions droplet break-up
could then be prevented even at a resonant excitation. For low viscosity liquids that we are dealing
with, viscous damping effects (i) can be expected to be negligible compared to the stabilization
effects of non-linearity (ii). Therefore, the inviscid modeling of the present work should have a
good chance to capture the excited drop oscillations during time intervals much larger than that
estimated by Eq. (23). The present section is called for testing this opportunity.
First, a comparison of the length of the major and minor axes extracted from the images of the

sequence depicted in Fig. 2 with theoretical values has been made. The measured lengths of both

Fig. 6. (a) The equatorial radius as a function of time for j ¼ 0:575, Ba ¼ 2:15, e ¼ 0:05, and x2 ¼ 1:5. A pattern of
Dt ¼ 8:57 is repeated several times virtually without modifications, a quasi-periodic case. (b) The equatorial radius as a
function of time for j ¼ 0:575, Ba ¼ 2:15, e ¼ 0:20, and x2 ¼ 5:66. No periodicity at all can be recognized any more.
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the major and minor axes and the corresponding theoretical values have been plotted in Fig. 7.
The agreement is very good during the whole period of oscillation T ¼ 12:5 ms, even though no
viscous effects were accounted for in the modeling. This is a clear manifestation of the dominating
role of the non-linear resonance-driving stabilization mechanism over the viscous effects.
As a next step, a comparison between calculated and measured droplet shapes has been made.

The shapes are presented in the dimensionless coordinates defined in Section 3. Comparisons at 10
different dimensionless instants t=T in the oscillation period have been made and are depicted in
Fig. 8. The agreement between the observed and the calculated shapes is seen to be excellent.

7. Sweeping case

We now modulate the ultrasonic field according to the law

AðeffÞ
0 ¼ A0ð1þ e sinx2tÞ; again with0 < e 	 1; ð26aÞ

but with

x2 ¼ x20 þ t
dx2

dt
; where

dx2

dt
is constant; ð26bÞ

i.e. we sweep a window; with the modulation frequency x2 this window is chosen such that it
contains the lowest eigenfrequency of the axisymmetric drop oscillations xðresÞ

2 .

Fig. 7. Comparison between measured and calculated length of the dimensional major axis 2bR and minor axis 2aR.

The period of oscillation was about T ¼ 12:5 ms, which is quite close to the value of 13 ms following from Eq. (1). The
same drop as in Fig. 2; e ¼ 0:005, x2 ¼ 5:0307 (rendered dimensionless by (g/R)�� (1/2)).
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Fig. 8. Comparison between measured and calculated droplet shapes at different deformation stages. The dimensionless

time t=T is given in each diagram. The coordinates x and z are rendered dimensionless by the radius of a volume
equivalent sphere. The same drop as in Fig. 2; e ¼ 0:005, x2 ¼ 5:0307 (rendered dimensionless by (g/R)�� (1/2)).
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The simulations presented in this section are in the origin motivated by experiments performed
in Daidzic et al. (1994). In spite of the fact that it is rather difficult to compare them directly to
theoretical considerations (see the remarks in the Introduction), the parameters chosen there have
been used for the simulations. In this way the wave number j, the surface tension number S, etc.
have been chosen according to the experimental parameters given in Daidzic et al. (1994). Sound
pressure level A0 as well as the modulation amplitude e, however, had to be chosen by a guess,
which are hoped to be as close as possible to the values used in the experiments and allowing e.g.
for stable drop shape equilibria in the case when modulation was switched off. Furthermore, the
sweeping rate dx2=dt had to be taken significantly (typically by a factor of 10 or 100) larger than
in the experiments mentioned, in order to keep computation time handy. On the other hand, the
sweeping rates used still lead to overall times (needed to sweep the whole range) that were far
beyond the limit within which the inviscid approximation holds. One crucial task of these sim-

Fig. 8 (continued)
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ulations, though, was to check whether the so-called jump-phenomenon, i.e. a sudden blow-up of
the oscillation amplitude at some excitation frequency (different for up-sweep and down-sweep,
Daidzic et al., 1994), could be reproduced or not; if it cannot be reproduced even without taking
into account viscous effects, it cannot be expected to be reproduced with viscous effects included
either.
We decided to take for the following simulations an acoustic Bond number of Ba ¼ 1, mod-

ulation amplitudes 0 < e6 0:02, and (dimensionless) sweeping rates dx2=dt ¼ �6:307� 10�3 or
�3:1535� 10�2. Given that t/Oð1Þ per cycle of the drop oscillation, the sweeping rates taken
here can be considered to be slow and virtually quasistatic.
In Fig. 9 we plot the equatorial drop radius as a function of the modulation frequency for a

down-sweep ðdx2=dt < 0Þ and an up-sweep ðdx2=dt > 0Þ for a moderate sweeping rate dx2=dt ¼
�6:307� 10�3 and a small modulation amplitude e ¼ 0:002. We consider, in particular, the en-
velope of the signal b(x2). It is evident that for both sweep directions the signal bðtÞ tends towards
an oscillation within fairly constant limits (still for the times when viscous damping is negligible).
These limits are practically the same for the up-sweep and for the down-sweep. In particular we do
not observe any signs of a ‘‘jump phenomenon’’ as described in Daidzic et al. (1994), i.e. a sudden
blow-up of the envelope of bðtÞ at a certain modulation frequency.
If the ultrasound pressure level is modulated with a constant frequency x2 of 5.036 or 5.980, we

get the beats throughout the simulations, and the oscillations remain weak in the range of validity
of the inviscid approximation (they will become even weaker when viscous effects come into play).
This indicates that the energy transfer from the ultrasound to the drop oscillation is strongly
restricted at these modulation frequencies, which are neatly distinct from xðresÞ

2 . Thus, in experi-
ments with sweeping modulation frequency one is to expect an increase and subsequent decrease

of the oscillation amplitude as a function of x2 when sweeping over the frequency xðresÞ
2 . In reality,

after sweeping over xðresÞ
2 energy, flux from the sound field to the oscillations will be detached, and

viscous damping will suppress oscillations for the values of x2 distant from xðresÞ
2 .

The same scenario as in Fig. 9 is essentially true for a slightly larger modulation amplitude of
e ¼ 0:005. The increase of e by a factor 2.5 leads to a similar increase in the range in which b
oscillates.
An important detail evident from Fig. 9 is the fact that the envelope of the signal b(x2) takes its

maximum at different frequencies (the maximum for the up-sweep is at a smaller x2 than that for
down-sweep, indicating a finite width of the resonance curve). This fact has to be taken into
account when resonant frequencies of drops, distorted under the influence of ultrasound, are to be
determined.
The peaks in the envelope of the frequency-sweep response seen in Fig. 9 remind those of an

undamped harmonic oscillator (cf. for example Fig. 3.4 in Pippard (1985)). Therefore the response
of the droplet in this case is basically almost linear.
Increasing e still further to 0.01 leads to the scenario depicted in Fig. 10. The up-sweep still

saturates. The down-sweep, however, behaves differently. Still, b tends to oscillate between well-
defined limits; the range connected with these limits is much wider in this case, though. For a still
higher modulation amplitude of e ¼ 0:02, in the up-sweep the equatorial radius b oscillates in a
range, the size of which is still roughly proportional to e . The down-sweep, however, behaves very
similarly to the one shown in Fig. 10b. However, the oscillation amplitude does not saturate. It
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blows up till the drop breaks up. It is emphasized that this break-up is not sudden, however, in the
sense of the jump phenomenon described by Daidzic et al. (1994).
The dependence of the droplet behaviour on the sweeping rate is illustrated in Fig. 11. In spite

of the fact that the modulation amplitude is the same as in Fig. 10, the range within which b
oscillates after saturation is smaller and symmetric for up-sweep and down-sweep.

Fig. 9. Drop equatorial radius as a function of the instantaneous modulation frequency x2ðtÞ on (a) up-sweep, i.e.
dx2=dt > 0, and b) down-sweep, i.e. dx2=dt < 0. We take S ¼ 3:757, j ¼ 1:055, Ba ¼ 1:00; the modulation amplitude is
e ¼ 0:002, the sweeping rate dx2=dt ¼ �6:307� 10�3 starting from x20 ¼ 5:036 for the up-sweep and 5.980 for the
down-sweep, respectively. In this case xðresÞ

2 � 5:5 (rendered dimensionless by (g/R)�� (1/2)).
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These findings are summarized by stating that an asymmetric blow-up of the equatorial radius
is observed if the sweeping-rate is sufficiently low and the modulation amplitude is sufficiently
high.

Fig. 10. Drop equatorial radius as a function of the instantaneous modulation frequency x2ðtÞ on (a) up-sweep, i.e.
dx2=dt > 0, and (b) down-sweep, i.e. dx2=dt < 0. Still we take S ¼ 3:757, j ¼ 1:055, Ba ¼ 1:00; the modulation am-
plitude is e ¼ 0:01 now, the sweeping rate dx2=dt ¼ �6:307� 10�3 starting from x20 ¼ 5:036 for the up-sweep and
5.980 for the down-sweep, respectively. In this case xðresÞ

2 � 5:5 (rendered dimensionless by (g/R)�� (1/2)).
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8. Conclusion

The effect of an ultrasound, modulated with a frequency which was comparable to the first few
drop resonance frequencies, was considered. For relatively small modulation amplitudes, the
results obtained agree very well with experimental findings. It has been demonstrated that droplets
excited at the lowest eigenfrequency do not necessarily disintegrate. This non-linear phenomenon
is related to the fact that at larger amplitudes the eigenfrequency changes, which leads to detuning
from resonance conditions. Effects of viscous damping for low viscosity liquids are uncomparably
weaker than the effect of non-linearity and can be neglected. For moderate modulation amplitude
a very rich drop dynamics was observed. A resonant drop break-up before any viscous effects have
come into play, could be triggered by an appropriate choice of the modulation frequency, al-
though the effective acoustic Bond number remained below its critical value Ba � 2:55 for a static
sound field. Crucial condition for the drop to break up was a sufficiently large modulation am-
plitude.
Finally the modulation frequency was changed linearly with time, sweeping over a window

containing the drop’s first eigenfrequency. In the range of the inviscid approximation the drop
equatorial radius oscillated between well-defined saturation values. For small modulation am-
plitude e the range of oscillation increased linearly with the modulation amplitude. For larger
modulation amplitude, however, a substantial increase in the oscillation range of the drop equa-
torial radius to a new saturation range was observed in the case of down-sweep; the increase did
not occur in up-sweeps of the modulation frequency for the modulation amplitudes used. This
result again showed the crucial importance of the modulation amplitude e, together with the
sweeping rate dx2=dt. The jump-phenomenon observed experimentally and described in literature
could not be reproduced numerically here, as a minimum at the sweeping rates employed, which
still differ significantly from those used in the experiments.

Fig. 11. Drop equatorial radius as a function of the instantaneous modulation frequency x2ðtÞ. Still we take S ¼ 3:757,
j ¼ 1:055, Ba ¼ 1:00; the modulation amplitude is e ¼ 0:01, the sweeping rate dx2=dt ¼ �3:1535� 10�2 starting from
x20 ¼ 5:036 for the up-sweep and 5.980 for the down-sweep, respectively.
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