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Theory of the photoacoustic effect with solids 
Allan Rosencwaig and Allen Gersho 

Bell Laboratories. Murray Hill. New Jersey 07974 
(Received 24 July 1975) 

When chopped light impinges on a solid in an enclosed cell, an acoustic signal is produced within the cell. 
This effect is the basis of a new spectroscopic technique for the study of solid and semisolid matter. A 
quantitative derivation is presented for the acoustic signal in a photoacoustic cell in terms of the optical. 
thermal, and geometric parameters of the system. The theory predicts the dependence of the signal on the 
absorption coefficient of the solid, thereby giving a theoretical foundation for the technique of 
photoacoustic spectroscopy. In particular, the theory accounts for the experimental observation that with 
this technique optical absorption spectra can be obtained for materials that are optically opaque. 

PACS numbers: 78.20.H. 43.35., 07.45. 

I. INTRODUCTION 

In 1880, Alexander Graham Belli discovered that when 
a periodically interrupted beam of sunlight shines on a 
solid in an enclosed cell, an audible sound could be 
heard by means of a hearing tube attached to the cell. 
Motivated by Bell's discovery, Tyndall2 and Rontgen3 

found that an acoustic Signal can also be produced when 
a gas in an enclosed cell is illuminated with chopped 
light. Be1l4 subsequently experimented with a variety of 
solids, liquids, and gases and his work generated a brief 
flurry of interest. The photoacoustic effect was evident­
ly regarded as a curiosity of no practical value and was 
soon forgotten. Fifty years later the optoacoustic or 
photoacoustic effect with gases was reexamined. It has 
since become a well- established technique for gas 
analysis and is well understood. Photons absorbed by 
the gas are converted into kinetic energy of the gas 
molecules, thereby giving rise to pressure fluctuations 
within the cell. The photoacoustic effect with solids, 
however, was apparently ignored for 90 years and a 
satisfactory theoretical explanation of the effect with 
solids was never published. 

Recently, interest in the photoacoustic effect with 
solids has been revived with the development of a very 
useful technique for spectroscopic investigation of solid 
and semisolid materials. 6-9 The name change from opto­
acoustic to photoacoustic has been instituted to reduce 
confusion with the acousto-optic effect in which a laser 
beam is deflected by acoustic waves in a crystal. 

In photoacoustic spectroscopy of solids, or PAS, 
the sample to be studied is placed inside a closed cell 
containing a gas, such as air, and a sensitive micro­
phone. The sample is then illuminated with chopped 
monochromatic light. The analog signal from the micro­
phone is applied to a tuned amplifier whose output is 
recorded as a function of the wavelength of the incident 
light. In this way photoacoustic spectra are obtained and 
these spectra have been found to correspond, quali­
tatively at least, to the optical absorption spectra of the 
solids. 

One of the principal advantages of photoacoustic 
spectroscopy is that it enables one to obtain spectra 
similar to optical absorption spectra on any type of 
solid or semisolid material, whether it be crystalline, 
powder, amorphous, smear, gel, etc. This capability 
is based on the fact that only the absorbed light is con­
verted to sound. Scattered light, which presents such a 
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serious problem when dealing with many solid materials 
by conventional spectroscopic techniques, presents no 
difficulties in photoacoustic spectroscopy. Furthermore, 
it has been found experimentally that good optical ab­
sorption data can be obtained, with the photoacoustic 
technique, on materials that are completely opaque to 
transmitted light. 9 PhotoacoustiC spectroscopy has al­
ready found some important applications in research 
and analysis of inorganic, organic, and biological solids 
and semisolids. 6-9 It furthermore has very strong po­
tential as a spectroscopic technique not only in the study 
of bulk optical properties, but also in surface studies 
and deexcitation studies. 9 With the rapid growth of in­
terest in PAS, a quantitative understanding of the 
production of the acoustic signal is of utmost importance. 
In this paper we lay the groundwork for this analysis. 
In addition we have, for the first time, been able to ac­
count for the capability of the photoacoustic technique to 
derive optical absorption spectra from systems that are 
completely opaque to transmitted light. 

BeU4 attributed the photoacoustic effect observed with 
spongy solids such as carbon black to a cyclic driving 
off of pulses of air from, and readsorption onto, the 
pores of the solid in response to the cyclical heating 
and cooling of the solid by the chopped light. He also 
supported the theory of RayleighlO who concluded that the 
effect is also probably due to a mechanical motion of 
the solid. However, Preece!! inferred from his ex­
periments that the solid does not undergo any sub­
stantial mechanical motion, and suggested that the ef­
fect was due to an expansion and contraction of the air 
in the cell. Mercadierl2 who also experimented with the 
effect concluded that the sound is due to "Vibratory 
movement determined by the alternate heating and 
cooling produced by the intermittent radiations, princi­
pally in the gaseous layer adhering to the solid surface 
hit by these radiations. " 

We have found, from experiments in which we first 
thoroughly evacuated the photoacoustic cell and then 
refilled it with nonadsorbing noble gases and from ex­
periments with two-dimensional solids and other mate­
rials with weak surface adsorption properties, that ab­
sorbed gases do not playa Significant role in the produc­
tion of the acoustic signal. Furthermore, it can be 
readily shown that thermal expansion and contraction 
of the solid, and any thermally induced mechanical 
vibration of the solid are generally too small in mag­
nitude to account for the observed acoustic signal. From 

Copyright © 1976 American Institute of Physics 64 



BOUNDARY 
OF GAS 

x_ 

(AIR) 

INCIDENT 
--+-

_-+....::LlGHT 

FIG. 1. Cross-sectional view of a simple cylindrical photo­
acoustic cell, showing the positions of the solid sample, back­
ing material, and gas column. 

both experimental and theoretical considerations we feel 
that the primary source of the acoustic signal in the pho­
toacoustic cell arises from the periodic heat flow from 
the solid to the surrounding gas as the solid is cyclically 
heated by the chopped light. 13 Only a relatively thin 
layer of air (- O. 2 cm for a chopping rate of 100 Hz) ad­
jacent to the surface of the solid responds thermally to 
the periodic heat flow from the solid to the surrounding 
air. This boundary layer of air can then be regarded as 
a vibratory piston, creating the acoustic signal detected 
in the cell. Since the magnitude of the periodic pressure 
fluctuations in the cell is proportional to the amount of 
heat emanating from the solid absorber, there is a 
close correspondence between the strength of the 
acoustic signal and the amount of light absorbed by the 
solid. 

II. HEAT-FLOW EQUATIONS 

Any light absorbed by the solid is converted, in part 
or in whole, into heat by nonradiative deexcitation pro­
cesses within the solid. We formulate a one-dimensional 
model of the heat flow in the cell resulting from the 
absorbed light energy. Consider a simple cylindrical 
cell as shown in Fig. 1. The cell has a diameter D and 
length L. We assume that the length L is small com­
pared to the wavelength of the acoustic signal and the 
microphone (not shown) will detect the average pressure 
produced in the cell. The sample is considered to be in 
the form of a disk having diameter D and thickness l. 
The sample is mounted so that its front surface is ex­
posed to the gas (air) within the cell and its back surface 
is against a poor thermal conductor of thickness lb. The 
length 19 of the gas column in the cell is then given by 
19 =L - 1- lb. We further assume that the gas and backing 
materials are not light absorbing. 

We define the following parameters: kl' the thermal 
conductivity of material i (cal/cm sec °C); PI> the density 
of material i (g/cm3); Cit the specific heat of material 
i (cal/gOC); al=k/PICI , the thermal dtifusivity of 
material i (cm2/sec); al = (w/2a;)1I2, the thermal dif­
fusion coefficient of material i (cm-I); iJ.1=l/al' the 
thermal diffusion length of material i (cm). i can take 
the subscripts s, g, and b for the solid, gas, and 
backing material, respectively, and w denotes the 
chopping frequency of the incident light beam in radians 
per second. 

We assume a sinusoidally chopped monochromatic 
light source with wavelength ;\. incident on the solid with 
intensity 
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1 = i10(1 + coswt), 

where 10 is the incident monochromatic light flux (W / 
cm2). Let {3 denote the optical absorption coefficient 
of the solid sample (in cm-I ) for the wavelength;\.. The 
heat denSity produced at any point x due to light absorbed 
at this point in the solid is then given by 

i{310 exp({3x}(1 + coswt} , 

where x takes on negative values since the solid extends 
from x = 0 to x = -1 with the light incident at x = O. Note 
also from Fig. 1 that the air column extends from x = 0 
to x = 19 and the backing from x = -l to x = - (1 + Ib). 

The thermal diffusion equation in the solid taking into 
account the distributed heat source can be written 

a2¢ 1 a¢ axr = as at-A exp({3x)[1 + exp(jwt)], 

for-l,,;;x";;O, (1) 
with 

where ¢ is the temperature and 7) is the efficiency at 
which the absorbed light at wavelength;\, is converted to 
heat by the nonradiative deexcitation processes. In this 
paper we shall assume 7) = 1, a reasonable assumption 
for most solids at room temperature. For the backing 
and the gas, 14 the heat diffusion equations are given by 

(2) 

~ =-.!..~, ax a g at (3) 

The real part of the complex-valued solution ¢(x, t) of 
Eqs. (1)- (3) is the solution of physical interest and rep­
resents the temperature in the cell relative to ambient 
temperature as a function of position and time. Thus the 
actual temperature field in the cell is given by 

T(x, t) = Re[¢(x, t)] + \P, 

where Re denotes the "real part of" and \P is the am­
bient (room) temperature. 

To completely specify the solution of Eqs. (1)-(3), 
the appropriate boundary conditions are obtained from 
the requirement of temperature and heat-flux continuity 
at the boundaries x = 0 and x = - 1, and from the con­
straint that the temperature at the cell walls x = + 19 and 
x = - 1- lb is at ambient. The latter constraint is a 
reasonable assumption for metallic cell walls but in any 
case it does not affect the ultimate solution for the 
acoustic pressure. 

Finally, we note that we have assumed the dimensions 
of the cell are small enough to ignore convective heat 
flow in the gas at steady-state conditions. 

III. TEMPERATURE DISTRIBUTION IN THE CELL 

The general solution for ¢(x, t) in the cell neglecting 
tranSients can be written 
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= e1 + ezx +d exp(J3x) + [U exp(as-X) + Vexp(- as-X) 

- E exp(J3x)] exp(jwt) , -l";x,,;O 

= (1 - x/lg)80+ 8 exp(- agX + jwt) , 

(4) 

where W, U, V, E, and 0 are complex-valued constants, 
e1' ez, d, Wo, and 00 are real-valued constants, and 
ai = (1 + j)ai with ai == (w/Za ;)1/2. In particular it should 
be noted that e and W represent the complex amplitudes 
of the periodic temperatures at the sample-gas boundary 
(x == 0) and the sample- backing boundary (x==-l), re­
spectively. The dc solution in the backing and gas al­
ready make use of the assumption that the temperature 
(relative to ambient) is zero at the ends of the cell. The 
quantities Wo and 80 denote the dc component of the 
temperature (relative to ambient) at the sample surfaces 
x ==-l and x==O, respectively. The quantities E and d, 
determined by the forcing function in Eq. (1), are given 
by 

and 

A 
d==-(3l' 

A _ {3Io. 
E == (h2 _ a;) - 2k s ({32 - a;) 

(5a) 

(5b) 

In the general solution, Eq. (4), we have omitted the 
growing exponential component of the solutions to the 
gas and backing material, because for all frequencies 
w of interest the thermal diffusion length is small com­
pared to the length of the material in both the gas and 
the backing. That is, J.lb« lb and J.lg« 19 (J.lg - 0.02 cm 
for air when w == 630 rad/sec), and hence the sinusoidal 
components of these solutions are sufficiently damped so 
that they are effectively zero at the cell walls. There­
fore, the growing exponential components of the solu­
tions would have coefficients that,are essentially zero 
in order to satisfy the temperature constraint at the 
cell walls. 

The temperature and flux continuity conditions at the 
sample surfaces are explicitly given by 

and 

¢g(O, tl= ¢.(O, t), 

¢b(-l, t)== ¢s(-l, t), 

O¢g () o¢s ) 
kgax- O,t ==ks~(O,t, 

O¢b( ) o¢s ) kbax -l,t ==ksa;:(-l,t, 

(6a) 

(6b) 

(6c) 

(6d) 

where the subscripts s, b, and g identify the solution to 
Eq. (4) for the temperature in the solid, backing, and 
gas, respectively. These constraints apply separately 
to the dc component and the sinusoidal component of the 
solution. From Eqs. (6), we obtain for the dc com­
ponents of the solution 

(7a) 

Wo == e1 - ezl + d exp(- (3l), (7b) 

(7c) 

(7d) 

Equations (7) determine the coefficients e1' ez, Wo, and 
eo for the time-independent (dc) component of the solu­
tion. Applying Eqs. (6) to the sinusoidal component of 
the solution yields 

and 

e==U+V-E, 

W == U exp(- asl) + Vexp(asl) - E exp(- (3l), 

- kgag8 == ksasU - ksas V - ks(3E, 

- k s(3 E exp(- (3l). 

(8a) 

(8b) 

(8c) 

(8d) 

These equations together with the expression for E in 
Eq. (5b) determine the coeffiCients U, V, W, and O. 
Hence the solutions to Eqs. (7) and (8) allow us to evalu­
ate the temperature distribution, Eq. (4), in the cell in 
terms of the optical, thermal, and geometric param­
eters of the system. The explicit solution for 0, the 
complex amplitude of the periodic temperature at the 
solid-gas boundary (x=O), is given by 

_ {3Io ( (r - 1)(b + 1) exp(asl) - (r + 1)(b .... 1) exp(- asn + 2(b - r) exp(- (3l») 
0- 2ks({32 _ a;) (g + 1)(b + 1) exp(asl) - (g- 1)(b - 1) exp(- asl) , 

(9) 

where 

b == k~b , 
kps 

r==(1-j) L, 
2as 

(10) 

(11) 

(12) 

and as stated earlier as == (1 + j)a •• Thus, Eq. (9) can be 
evaluated for specific parameter values yielding a com­
plex number whose real and imaginary parts 01 and 8z, 
respectively, determine the in-phase and quadrature 
components of the periodic temperature variation at the 
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burface x == 0 of the sample. Specifically, the actual 
temperature at x == 0 is given by 

T(O, t) == ~ + eo + e1 coswt - ez sinwt, 

where ~ is the ambient temperature at the cell walls 
and 80 is the increase in temperature due to the steady­
state component of the absorbed heat. 

IV. PRODUCTION OF THE ACOUSTIC SIGNAL 

As stated in Sec. I, it is our contention that the main 
source of the acoustic signal arises from the periodic 
heat flow from the solid to the surrounding gas. The 

A. Rosencwaig and A. Gersho 66 



.s = c#>o coswt 

GAS 

FIG. 2. Spatial distribution of the time-dependent temperature 
within the gas layer adjacent to the solid surface. 

periodic diffusion process produces a periodic tempera­
ture variation in the gas as given by the sinusoidal (ac) 
component of the solution, Eq. (4), 

cf>ac(X, t} = 8 exp(- ugX + jwt). (13) 

Taking the real part of Eq. (13), we see that the actual 
physical temperature variation in the gas is 

T ac(x, t) = exp(- a,x) [81 cos(wt - agX) - 62 sin(wt - agX}], 

(14) 
where 81 and 82 are the real and imaginary parts of 6, 
as given by Eq. (9). As can be seen in Fig. 2, the time­
dependent component of the temperature in the gas at­
tenuates rapidly to zero with increasing distance from 
the surface of the solid. At a distance of only 27T/ag 
= 27TlJ- g, where IJ-g is the thermal diffusion length, the 
periodic temperature variation in the gas is effectively 
fully damped out. Thus we can define a boundary layer, 
as shown in Fig. 1, whose thickness is 27TlJ-g ('" 0.1 cm 
at W/21T = 100 Hz), and maintain to a good approximation 
that only this thickness of gas is capable of responding 
thermally to the periodic temperature at the surface of 
the sample. 

The spatially averaged temperature of the gas within 
this boundary layer as a function of time can be deter­
mined by evaluating 

_ 2r~g 

cf>(t} = (l/27TlJ-g) 1 cf>ac(X, t) dx. 
o 

From Eq. (13) this gives 

¢(t)::;(1/2v27T)6 exp(j(wt- h)]' (15}1 

using the approximation exp(- 21T)« 1. 

Because of the periodic heating of the boundary layer, 
this layer of gas expands and contracts periodically and 
thus can be thought of as acting as an acoustic piston on 
the rest of the gas column, producing an acoustic pres­
sure signal that travels through the entire gas column. 
A similar argument has been used successfully to ac­
count for the acoustic signal produced when a conductor 
in the form of a thin flat sheet is periodically heated by 
an ac electrical current. 15 

The displacement of this gas piston due to the 
periodic heating can be simply estimated by using the 
ideal gas law, 

() 2 ¢(t) ~ [j( 1. }] ox t = 1TlJ-g --;y- = exp wt -.1T , 
o v2 To 

(16) 

where we have set the average dc temperature of this 
gas boundary layer equal to the dc temperature at the 
solid surface, To = if> + 60, Equation (16) is a reasonable 
approximation to the actual displacement of the layer 
since 27Tj.Lg is only - 0.1 cm for W/21T = 100 Hz and even 
smaller for higher frequencies. 

If we assume that the rest of the gas responds to the 
action oHbis piston adiabatically, then the acoustic 
pressure in the cell due to the displacement of this gas 
piston is derived from the adiabatic gas law 

PvY =const, 

where P is the pressure, V the gas volume in the cell, 
and y the ratio of the specific heats. Thus the incre­
mental pressure is 

where Po and Vo are the ambient pressure and volume, 
respectively and - oV is the incremental volume. Then 
from Eq. (16) 

oP(t) = Q exp[j(wt - h)], (17) 

where 

Thus the actual physical pressure variation, 8oP(t) , is 
given by the real part of oP(t) as 

8oP(t) = Q1 cos(wt - h) - Q2 sin(wt - h), (19) 

or 

8oP(t) = q cos(wt -l/J - h), (20) 

where Q1 and Q2 are the real and imaginary parts of Q 
and q and - l/J are the magnitude and phase of Q, i. e. , 

Thus Q specifies the complex envelope of the sinu­
soidal pressure variation. Combining Eqs. (9) and (18) 
we get the explicit formula 

Q _ {3IoYPo (r - l}(b + 1) exp(o}} - (r + l)(b - 1) exp(- usi) + 2(b - r) exp(- (3l)) 
- 2v2 ksl,.agT 0({32 - u~) (g + l}(b + 1) exp(usl) - (g - l}(b - 1) exp(- usl) , 

(21) 

where b = kbab/kSaS' g = k,.a/ksns, r = (1 - j){3/2as, and 
Us = (1 + j)a s as previously defined. At ordinary tem-
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~eratures To'" if> so that the dc components of the tem­
perature distribution need not be evaluated. Thus Eq. 
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FIG. 3. Schematic representation of special cases discussed 
in the text. 

(21) may be evaluated for the magnitude and phase of 
the acoustic pressure wave produced in the cell by the 
photoacoustic effect. 

V. SPECIAL CASES 

The full expression for I5P(t) is somewhat difficult 
to interpret because of the complicated expression for 
Q as given by Eq. (21). However, physical insight may 
be gained by examining special cases where the expres­
sion for Q becomes relatively simple. We group these 
cases according to the optical opaqueness of the solids 
as determined by the relation of the optical absorption 
length, 

1l/l=1/{3 

to the thickness 1 of the solid. For each category of 
optical opaqueness, we then consider three cases ac­
cording to the relative magnitude of the thermal diffusion 
length Ils, as compared to the physical length 1 and the 
optical absorption length Il/l' For all of the cases evalu­
ated below, we make use of the reasonable assumption 
that g < b and that b -1, i. e., that k,o,1f < klflb and klflb 
- ksas• 

The six cases are illustrated in Fig. 3. It is con­
venient to define 

Y= yPoIo , 
2..f2llfTo 

(22) 

which always appears in the expression for Q as a con­
stant factor. 

A. Case 5.1: Optically transparent solids (1l{3 > 1) 

In these cases, the light is absorbed throughout the 
length of the sample. 

1. Case 5.1 (a): Thermally thin solids (Ils ~ I; Ils > 1l(3) 

Here we set exp(- (3l)= 1- (3l, exp(±O'sl) ~ 1, and Irl 
> 1 in Eq. (21). We then obtain 

Q = ~ ({3 - 2asb - j(3) == (1- j){3l fl Y. (23) 
2a,o,~b 2alf kb 

The acoustic signal is thus proportional to {3l and, since 
Il/alf is proportional to l/w, the acoustic signal has a 
w-1 dependence. For this thermally thin case of 11.» l, 
the thermal properties of the backing material come into 
play in the expression for Q. 
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2. Case 5. 1 (b): Thermally thin solids (Ils > I; Ils < 1l(3) 

Here we set exp(- (3l) ~1- (3l, exp(±asl) ~ (1 ±asl), and 
Ir 1< 1 in Eq. (21). We then obtain 

{3lY [( 2 2). 2 2 ] Q = 4k 3b (3 + 2as + J({3 - 2as) 
sa,o,s 

== (1- j){3l (&...) Y. 
2alf kb 

(24) 

The acoustic signal is again proportional to {3l, varies 
as w-1, and depends on the thermal properties of the 
backing material. Equation (24) is identical to Eq. (23). 

3. Case 5.1 (c): Thermally thick solids {Ils < I; Ils ~ Illd 

In Eq. (21) we set exp(- (3l) == 1- (3l, exp(- asl) == 0, and 
Ir I «1. The acoustic signal then becomes 

Q=_j {3lls('&')Y. 
2alf ks 

(25) 

Here the signal is now proportional to {3lls rather than 
{3l. That is, only the light absorbed within the first 
thermal diffusion length Ils contributes to the signal, in 
spite of the fact that light is being absorbed throughout 
the length 1 of the solid. Also, since Ils < l, the thermal 
properties of the backing material present in Eq. (24) 
are replaced by those of the solid. The frequency de­
pendence of Q in Eq. (25) varies as w-3/2 • 

B. Case 5.2: Optically opaque solids (1l6 ~ I) 

In these cases, most of the light is being absorbed 
within a distance small compared to l. 

1. Case 5.2 (a): Thermally thin solids (Ils ~ I; Ils ~ Illl) 

InEq. (21) we setexp(-{3l)';O, exp(±asl) = 1, and 
Ir I» 1. We then obtain 

Q= (l-j) (&...)y (26) 
2a1f kb 

In this case, we have photoacoustic "opaqueness" as 
well as optical opaqueness, in the sense that our acoustic 
signal is independent of (3. This would be the case of a 
very black absorber such as carbon black. The signal is 
quite strong, [it is 1/{3l times as strong as that in case 
5.1(a)], and depends on the thermal properties of the 
backing material, and varies as w-1• 

2. Case 5.2 (b): Thermally thick solids (Ils < I; Ils > 1l(3) 

In Eq. (21) we set exp(- (3l) == 0, exp(- asl) ~ 0, and 
Ir I> 1. We obtain 

Q ~ Y ({3 - 2as - j(3) =- (1- j) (.&.) Y. (27) 
2a,o,sks{3 2a1f ks 

Equation (27) is analogous to Eq. (26), but the thermal 
parameters of the backing are now replaced by those of 
the solid. Again the acoustic signal is independent of 
{3 and varies as w-1• 

3. Case 5.2 (c): Thermally thick solids (Ils ~ I; Jls < Illl) 
We set exp(- {3l)~O, exp(- asl)~O, and Irl < 1 in Eq. 

(21). We obtain 

Q=~ (2as -{3+j{3)= -j{3lls ('&')Y. (28) 
4a,o,sks 2a1f k. 
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This is a very interesting and important case. Optically 
we are dealing with a very opaque solid ({31» 1). How­
ever, as long as {3lls < 1, i. e., Ils < IlB' this solid is not 
photoacoustically opaque, since, as in case 5.1(c), only 
the light absorbed within the first thermal diffusion 
length, Ils, will contribute to the acoustic signal. Thus 
even though this solid is optically opaque, the photo­
acoustic signal will be proportional to {3lls. As in case 
5.1(c), the signal is also dependent in the thermal 
properties of the solid and varies as w-3/2 • 

VI. CONCLUSIONS 

A theoretical analYSis of the photoacoustic effect with 
solids has been performed. In this analysis we have 
assumed that the primary source of the acoustic signal 
arises from the periodic heat flow from the solid to the 
surrounding gas. This periodic heat flow causes an os­
cillatory motion of a narrow layer of gas at the solid­
gas boundary, and it is this motion of the gas layer that 
produces the acoustic signal detected in the photo­
acoustic cell. We have derived the exact solutions for 
the acoustic pressure produced in the cell due to the 
process and have evaluated explicit formulas for certain 
cases of physical significance. 16 The formulas developed 
for the special cases have been found to give numerical 
results for magnitude and phase of the acoustic signal 
that are in good agreement with the experimental data. 
This agreement supports our explanation for the mech­
anism underlying the photoacoustic effect with Solids. A 
full comparison of theory and experiment will be 
published in a later paper. 

Our formulas show that the photoacoustic signal is 
ultimately governed by the magnitude of the thermal dif­
fusion length of the solid. Thus even when a solid is 
optically opaque, it is not necessarily opaque photo­
acoustically and, in fact, as long as {3lls < 1, the photo­
acoustic Signal will be proportional to {3, even though 
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the optical thickness {31 of the sample may be much 
greater than unity. Since the thermal diffusion length 
Ils can be changed by changing the chopping frequency 
w, it is therefore possible, with the photoacoustic tech­
nique, to obtain optical absorption spectra on any, but 
the most highly opaque, solids. This capability of the 
PAS technique together with its insensitivity to scattered 
light makes its use as a spectroscopic tool for the in­
vestigation of solid and semisolid materials highly at­
tractive. In particular, these features give the photo­
acoustic technique a unique potential for noninvasive 
in vivo studies of human tissues, a potential which may 
have important implications in biological and medical 
research and in medical diagnostics. 
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